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President's Message, TCTM - Year in Review

As I think back over my past year as TCTM President, I cannot help but be
impressed by the many members who put in countless hours to help the
organization have a successful year. Read on to learn what your $8 dues has
helped us accomplish!!

Communication with members is a primary goal of our organization. This
past year you should have received four Texas Mathematics Teacher journals,
and two Math Talk newsletters with the STEAM Across Texas publication
enclosed. George Willson is responsible for the journal and Dorothy Ware
edits the STEAM publication. Those are huge jobs, and' I appreciate their
hard work. If you would like to help in either one of those projects, let
George or Dorothy know. If you are not receiving these publications
regularly, we want to know about it. The mailing label on this journal
indicates when your dues expire - be sure to stay current so that you won't
miss out on these mailings. Members are also sent the CAMT program
booklet each spring.

One of the major functions of the Texas Council of Teachers of
Mathematics is to co-sponsor the annual Conference for the Advancement of
Mathematics Teaching. Other sponsors are the Texas Education Agency, the
Texas Section of the Mathematical Association of America, and the Texas
Association of Supervisors of Mathematics. TCTM is in charge of on-site
registration, and many of our members worked at the registration desk during
the conference. Thanks to your hard work, lines were short or non-existent.
We also are in charge of NCTM material sales, and Cindy Schaefer did a
wonderful job of organizing that task. The TCTM breakfast meeting was
held during CAMT and those in attendance appreciated the hard work of
Frances Thompson in making the arrangements and obtaining the MANY
door prized that were given away! Next summer CAMT will be held July 27
- 29 at the George R. Brown Convention Center. in Houston.

e

At the CAMT luncheon, the 1993 Texas teachers s:febted as state-level
Presidential Awardees in Mathematics were honored. TCTM is please to
have been able to give each of these outstanding teachers $50 to help cover
their CAMT expenses.
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One of the most enjoyable tasks | have as your president is getting to read
the college scholarship applications from high school seniors. With help
again from a generous contribution from Prentice Hall, TCTM awarded a total
of four thousand dollars in scholarship money to six student who plan to
pursue careers in mathematics education. Many outstanding young people
applied, and the scholarship committee had a difficult job making their
selections. Look for the 1994 scholarship application form in the spring M ath
Talk newsletter. ’

Next summer we will be awarding at least six $100 CAMTerships to
teachers who are TCTM members and have just completed their first year in
the classroom. We hope that this will encourage new teachers to atiend
CAMT, and help them with the expenses. they incur in doing so. More
information about this project will be in the fall Math Taik.

If you have ideas about ways we can improve TCTM, or if you want to
become more involved, [ want to hear from you! I challenge you to become
involved in your professional organizations, and be a pesitive voice for
mathematics education in your school and in your community. Have a good
year, ‘

Susan Thomas
TCTM President
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ACTIVITIES AND GAMES FOR

DECIMAL NOTATION

Mona Edwands
Owasso, Oklahoma

Jean Bosch

Richmond, Texas

OBJECTIVE: Junior High School students will be able to correctly write
decimal numerals which are dictated eor shown to them in word form.

Activity 1:

Magically change the decimal point into a basketball and you will
simultaneously infuse your class with enthusiasm and guaranteed fun and
success! Take them to the gym, and you'll be able to feel their excitement.
That's exactly what you get to do with this activity.

Before going to the gym with the class, you will need to prepare two
large butcher paper strips with about six lines drawn to indicate place value.
The strips should be posted horizontally beside each other on a wall and
should look like this:

% — s e ®
—_ — —

You will need a box containing the numbers 0-9 and a decimal point,
which have been written on individual index cards. (You'll have a total of

TEXAS MATHEMATICS TEACHER
VOL. XL (4) October 1993




5

11 cards including the decimal point card) Also write two sets of the
numbers 0-9 in large print on typing paper. :

Take the class to the gym and divide them into two teams. Ideally, there
should be eleven students on each team so that each student can hold one
item. Give each teamn a set of the typing paper numbers and a basketball
(alias, the basketball point). The students should distribute the typing paper
numbers and basketball among them so that each student has one item. A
team captain or another student can be in charge of the basketball or "decimal
point." Line each team up at least twenty feet in front of their paper strip and
paralle] to it.

Explain to them that you will draw numbers out of the box to form a
decimal numeral (which they will not get to see), and that you will then
dictate the number name to them. For example, suppose you draw in order
a 2,a 6, a decimal point, 2 5, a 7, and then a 1. You will then dictate
"twenty-six and five hundred seventy-one thousandths." '

As soon as the number name is dictated, the team members should rush
to their correct positions in front of the butcher paper strips, with the left-
most position on the paper being assigned to the largest place value of the
number-being formed. When students are in place, they should hold their
typing paper numbers up in front of them. The first team to correctly get in
place gets the point. Note that all team mermbers will not play each round
because all numbers will not be called, but the decimal point should always
be used, whether or not the decimal card is drawn, to stress that the decimal
point is understood to be to the right of the units place of all whole numbers.

Note that you should draw as many or as few cards as your class is ready
for, eventually making it harder. You may or may not draw the decimal
point card each time, and, of course, if the 0 card is drawn first, the teacher
will disregard it in the dictation.

The students love this and become very clever.” They leamn to exchange
numbers on their team frequently so that any members from the other team
who do not yet understand place value cannot watch someone on their team
who might have the same number they do and just see where they are
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supposed to go. Conversely, while each team is intent on not helping the
other team, the teams do talk with and help their own members.

A variation of this game uses only one sttip and lets the teams take turns.
A time limit of one minute is given on either game after the first day.

In later games the number can be written out in words on the overhead
rather than dictated orally. The game continues as before.

Activity 2;

A follow-up activity which unobtrusively brings students closer to pencil,
paper, and decimal points involves prepared sentence strips and dried pinto
or red beans. The teacher gives each student or set of partners a sentence
strip that is prepared like this:

L e — L ]

They also get half of an index card with a one digit number written on it.
For case of checking, they should all have the same number. They will all
need & bean which will represent the decimal point. The bean is really not
necessary since the decimal point is written on the sentence strip, but it adds
interest, stress, and physical dimension to the activity. The students just put
the bean over the decimal point on their sentence strip.

The teacher will then dictate a number that should include the number
that is written on the index cards. If the students' index cards have a 6
written on them, for example, there will be a 6 in all dictated numbers. Then
the teacher might dictate the number "one hundred six and thirty-four
hundredths." The students should write down what they think the teacher has
said on a scratch paper and then put the 6 and the bean where they should go
on the sentence strip. In this case, the students' strips should look like as
follows:
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It is very easy to check on the progress of your students with a glance around
the room.

This activity, too, can be modified by giving each set of partners the full
set of halved index cards with numbers 0-9 written on them, a bean, and a
sentence strip without the decimal point written in a permanent position.

These activities provide a kinesthetic learning mode by which to drill,
increase student interest, and provide ease in immediate monitoring of student
progress. They also allow for cooperative learning and are enjoyable because
of the success students experience and the joy they have in the process of
learning something they will never forget. Enjoy!
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WHY MANIPULATIVES WORK

John A. Fossa
Hsuan Kung-Shyu

Texas A &M University
College Station, Texas

Hear.... and, Forget
See.... and, Remember
Do.... and, Understand.
--0ld Chinese Proverb

If you don't have a dog,
you-go hunting with the cat.
- --Old Brazilian Proverb

Proverbial Comments

Popular wisdom often not only scoops the slower-paced, though more
sure-footed, results of scientific investigation, but it also encapsulates these
results in a more palatable manner. Thus, the Chinese proverb cited above
summarizes, in a form that virtually commands immediate assent, the basic
findings on the use of manipulative materials in the teaching of elementary
mathematics. Fennema (1972) and Sowell (1989), for example, reviewed the
research on the effectiveness of mathematics lessons which included the use
of manipulatives. Both concluded that mathematics achievement is
substantially increased by the long-term use of concrete instructional
materials; student's attitudes toward this too often dreaded subject were also
improved by the incorporation of manipulatives into mathematics lessons.

Manipulatives, however, are not a panacea; they promote, but do not
insure success. Indeed, a well planned and nicely executed lesson using
appropriate manipulative materials may leave some children cold. Hence, the
teacher must possess the resourcefulness that the above cited Brazilian
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proverb admonishes of us. Different instructional approaches for presenting
the same content may be necessary in order to reach the whole class.
Moreover, should the "dog" turn out to be a sophisticated set of industrialized
materials, which may just not be available (or not available in sufficient
quantities) in many school systems, the "cat” can always be homemade
materials or materials that the students themselves collect and/or assemble.

Nevertheless, the creative, caring teacher may not be getting the most out
of the manipulatives used in the classroom. Specific lesson guidelines for
using the materials at hand are not enough. Indeed, we propose that one of”-
the most important aspects of the use of manipulatives is the teacher's creative
input--and by "input” we here include such notions as the teacher's knowing
when and how to cue the students and when to back off and leave the
students to their own devices. The quality of this teacher input, however,
depends, at least partially, on the teacher's understanding -of why
manipulatives work since this understanding promotes a sympathetic, almost
mystical, three-comered. relation between the teacher, the student, and the
materials used. (The more prosaic question of how manipulatives work is,
of course, addressed in most lesson guides.) Unfortunately, there 1S no. one
definitive answer to this question. In what follows, therefore, we will try to
address the question of why manipulatives work from various theoretical
viewpoints--so many "cats,” as it were, in our hunt for ever more effective
teaching,

The CIP Approach

One, important approach to human leaming current among education
specialists is the Cognitive I[nformation Processing (CIP) model. The
fundamental metaphor guiding research by CIP theorists is that the human
mind works pretty much like a sophisticated electronic computer. This
framework is, of course, not surprising since one of the basic motivations for
the development of "thinking machines" was to design a mechanical model
of human thought. Although it is not a very suggestive model for the
important affective and volitional aspects of human experience, the CIP model
has proved to be very fruitful in the investigation of the cognitive domain.
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According to the CIP model, when sets of stimuli are received by the
human organism, some of them are filtered into the short-term (or working)
memory by devices that direct and maintain our attention. Selected stimuli
are then encoded for transferal to the long-term memory for storage and
eventual retrieval. The model can be elaborated in various ways, such as the
inclusion of a set of master controls which selects appropriate strategies for
a given task; indeed, further elaborations may be expected as our engineers
discover ever more wrinkles in their electronic grey matter. Nevertheless, this
short summary will suffice for our purpose here.

The CIP model posits certain internal processes that may be influenced
by external events (Gagné, 1985). Among the former (internal processes) are
such activities as the aforementioned encoding and storage of cognitive
material. Although the means by which the nervous system effects these
processes are not completely known, CIP based research seems to have
succeeded in identifying various external events that do promote learning.
Among these external events, we may classify instruction with manipulative
malerials. Manipulatives help to direct and focus attention by providing
concrete instances with which to work. Thus, in developing the concept of
fractions, the use of fraction rods, for example, provide specific tasks for the
learners, thereby helping to focus and maintain their attention.

Being physical embodiments of concepts, manipulatives also increase the
distinctiveness of the concepts being studied, which in tumn facilitates both the
ability to discriminate a given concept from others and the ability to encode
and store the concept in an easily retrievable manner. "One third," for
example, becomes more distinct for the student when it is actually marked off
from a unit and seen to be a determinant part of that unit; it also becomes
possible to directly compare thirds and, say, fourths, which helps the student
to develop intuitions about these concepts. By multiplying the number of
senses involved in the learning situation, manipulatives increase the depth of
processing which, again, promotes good encoding. Indeed, depth of
processing is an important notion, but, since it depends on the idea of mental
schemata which the CIP model took over from the developmentalists, we will
defer further discussion of it for the moment.
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We often hear the truism that the teacher can teach, but only the student
can do the learning. The CIP model makes this truism more precise in that
it takes into account both the internal processes and external events in any
learning situation. Manipulatives aid both aspects. They help the student to
become actively involved with the material that is to be learned and, thus,
trigger the internal cognitive processes of the student. They also help the
teacher to influence the learning process by setting up those external events
that foster the effective execution of the internal processes.

The Developmental Approach

- Piaget advances the doctrine that children develop according to fixed
stages at more or less fixed ages. Were it possible to comelate these
devélopmental stages, marked by emergent mental capabilities, with the
maturation of various structures of the cerebro-nervous system, the doctrine
would be of great interest. Not only has no such comrelation been
demonstrated, however, but psychological research has found virtually no
support for the eoncept of fixed developmental stages and, thus, this aspect
of Piaget's theory has not found much acceptance in the scientific community.
In his later work, even Piaget himself downplayed the idea of fixed stages.

Other aspects of Piaget's approach, however, have been of enormous
influence. Thus, Piaget identified two different types of knowledge: physical
knowledge of objects in external reality and logico-mathematical knowledge
of relationships among these objects. Seeing a pile of buttons is an example
of physical knowledge and even partitioning that pile into three
(equinumerous) smaller piles does not in itself go much beyond -physical
knowledge. When, however, the three piles are recognized to be the same
(that is, equinumerous) and are related to the original pile as determinant
parts, then logico-mathematical knowledge emerges since the learner is no
longer concentrating on the piles of buttons themselves, but on their
relationships to one another and to the original pile. This distinction has
evolved into the idea of different levels of abstraction, each level being more
or less dependent on preceding levels. The idea here is not one of emergent
developmental stages in the learner, but rather one of a structure inherent in
the material to be leamed. :
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In Piagetian terms, therefore, manipulatives would be important devices
for acquiring both types of knowledge. We acquire physical knowledge, of
course, through the senses. The acquisition of logico-mathematical
knowledge is also promoted by the use of manipulatives, however, because
the relationships among objects that constitute this type of knowledge are
developed by observing objects in interaction. Thus, when the above
mentioned pile of buttons is linked to the partition by the appropriate
concepts, the idea of fractions may be developed. Manipulatives provide the
occasion for the child to observe how objects relate to each other and how
they react to the child's own actions.

Another fruitful aspect of Piaget's thought is that logico-mathematical
knowledge is not just an internal replica of external relationships lifted,
somehow, form the object-world; rather, it is a mental creation of the
relationships involved. Piagetian research demonstrated a constructivist
principle according to which children build their knowledge in interaction
with the environment through their own mental activity. Thus, manipulatives-
.and here we must insist on the correct meaning of the word, materials that
the children actually manipulate themselves--manipulatives are the proving
ground for the child's mental activity. By experimenting with various
relations among the manipulative materials (and, of course, with judicious
cuing and feedback from the teacher), the child gradually builds up coherent
patterns of relationships. Thus, it is not sufficient to give a child a pile of
beads and expect the development of the whole system of fractions in short
order. Rather, various mediating concepts need to be developed. The teacher
can foster this development by setting the student structured tasks,
encouraging the student to taik about emerging concepts, and testing various
ideas using the materials at hand.

Schematizers

Perhaps the most fruitful Piagetian concept is that of a schema. The
notion is-virtually ubiquitous in contemporary theorizing about the learning
process. Simply put, a schema is a pattern of relationships, or 4 conceptual
structure, built up by the knower. Understanding a concept consists in fitting
it into a schema; that is, putting it in its right place in relation to other
concepts. Thus, schemata are not static edifices, but dynamic structures that
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may be constantly ¢laborated and otherwise modified or even abandoned for
other schemata.

On the one hand, each schema is composed of bits of knowledge (though
this is a simplification), but on the other hand the schemata that we have
already built up effect the processes of further knowledge acquisition since
the new knowledge must be fitted into a schema. Each schema may be more
or less elaborated and each bit of knowledge may be placed in a more than
one schema. The more that each schema is filled out and the more
connections there are between various schemata, the more is the depth of
processing (on the CIP model) increased and, consequently, both
understanding and recall improved. Thus, the concept of division is a
complex schema which inciudes the subsidiary concepts of grouping and
sharing, while the concept of fractions is also a complex schema which
" includes such notions as (equal) parts. But both sharing and grouping are
also applicable to the concept of fraction and, thus, by relating the new
schema of fractions to the already developed schema of division, a richer and
more meaningful conception of fractions emerges.

We have already indicated that manipulatives enhance that mental activity
that results in the construction of conceptual structures. They also promote
greater understanding by fostering greater elaboration of each schema and a
larger number of connections between schemata. There may be still another
way in which manipulatives promote instruction, however, for schemata
cannot themselves be transferred directly from the teacher to the child
(Skemp, 1987). By presenting the child with structured (from the teacher's
viewpoint) manipulative materials, the child is more likely to construct
struetures corresponding to the concepts that the teacher is trying to impart.

In Lieu of a Conclusion

Since the purpose of this paper is to address, from different theoretical
positions, the question of why manipulatives work, a traditional conclusion
to the paper does not seem entirely appropriate. In lieu of such a conclusion,
therefore, we offer a few words on two additional topics: the NCTM's
Standards and the effects that manipulatives may have on the affective and
volitional aspects of the learning situation. '
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The NCTM's Standards calls for a reconceptualization of the way that
mathematics is taught. In particular, it is suggested that leamers not be
treated as passive recipients in the acquisition of merely computational skills
by rote learning, but rather as active participants in the building up of their
own mathematical knowledge. Regardless of the particular content being
taught, manipulatives address this fundamental expectation by encouraging
children to investigate the mathematical properties under discussion, as well
as fostering the formulation and testing of mathematical concepts by the
children themselves. The Standards explicitly recognize the effectiveness of
manipulatives, morcover, by recommending that the classroom be stocked
with appropriate learning materials, including simple household supplies like
beans and buttons.

Finally, we would like to comment on the affective and volitional aspects
of mamipulatives. It is perhaps patent that the child's affective relation to
mathematies will be at least partially determined by the child's ability or
inability to understand the mathematical concepts being taught and to
successfully complete the tasks assigned by the teacher. Since manipulatives
promote understanding, they may also be expected to promote positive
attitudes. The external approbation of success or frustration of failure,
however, are but a small part of the affective relations involved. Indeed, we
believe that the human activity of creation is an inherently pleasurable activity
and thus the role of manipulatives in liberating the child's creative forces in
the comstruction of mathematical structures is of the utmost importance in
developing positive affective attitudes towards mathematics.

. The wvolitional aspects of learning are almost always forgotten in
discussions about learning processes, Nevertheless, to use Plato's evocative
phrase, "the spirited part of the soul" may determine the quality of any given
learning experience. This is because leamning is, as we have already seen, an
activity undertaken by the individual and because the level of activity
undertaken by any individual is determined by that individual's volition. As
a first approximation, we may distinguish the following four points in the
continuum of activity levels: the individual may wholeheartedly undertake a
given project; halfheartedly go along with the teacher; halfheartedly resist the
teacher; or wholeheartedly oppose a given project. Thus, the individual
makes a conscious decision--or, at any rate, a decision that can be made
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conscious upon reflection-to undertake a given project at some activity level.
Since the individual's affective relation to the project to be undertaken is a
major influence in the decision, manipulatives may inspire higher activity
levels by promoting positive affective relations towards mathematics.*
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THE RADIAL PLANE— A MODEL

OF SPHERICAL GEOMETRY

James R, Boone

Department of Mathematics
Texas 4 &M University
College Station, Texas

The purpose of this brief note is to introduce a very intriguing, yet
simple, model of a spherical (non-Euclidean) geometry and some of its
properties.

This model may be used as a source of challenging enrichment activities
for geometry students. The axioms, theorems, and the geometric objects in
this model are distinctly different from the Euclidean plane, which may have
become "obvious” to them. For example, consider the AABC in Figure 4,
{page 20). The development of the examples, which can be easily sketched
in the plane, will require the students to carefully reconsider the definitions
of the geometric objects and the meaning and implications of the axioms,
which they may have begun to overlook. It provides an uncluttered study of
axjomatic systems and how the negation of a few key axioms can have large
effects on their consequences, the theorems.

I recommend that the points, lines, distance, and angular measure should
be defined and a number of examples such as: line, ray, angle, and segments,
should be presented. The student, or study group, will benefit by discovering
the various examples contained in this note. The other concepts, like
convexity and the plane separation axiom, can be introduced as the study
evolves.

All terms in this note are consistent with the text by E. E. Moise. In.
section one, the Radial Plane geometry is defined, and in section two, many
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of the interesting properties of this model are presented. In section three, a
cotmnparison of this geometry with the geometry of the sphere is provided, as
well as an example of the Radial Plane geometry in the Minkowski Light
cone. The discovery that this model 1s the natural geometry generated by
cones has developed as a pleasant bonus in this study.

1. Description of the Radial Plane Geometry.

The Radial Plane Geomerry 1s defined as follows: Let the space be the
points of the Cartesian plane. A line will be the union of any two distinct
rays with the origin, 0, as the common endpoint. If the rays are collinear,
then they are also opposite rays. As illustrated in Figure 1, the plane is
partitioned into three disjoint sets, line 4 F and the halfplanes H, and H,.

Figure 1.

All lines intersect at the origin, and thus, there are no parallel lines
(spherical geometry). If P and Q are on the same ray with its endpoint at 0,
then the distance from P to Q, d(P,Q), is the usual Pythagorean distance from
P to Q, dy(P,Q). Observe that there are infinitely many lines containing P
and Q, when P and Q are on the same ray with its endpoint at the origin.
Thus, two points do not determine a unique line, and thus this incidence
axiom fails in the Radial Plane, as it does in the geometry of the sphere. If
P and Q are on different rays with endpoints at 0, then d(P,Q) - dy(P,0) +
dy(0,Q). (d is the well-known radial metric for the plane.) Unlike the
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is, all lines have coordinate systems, all distance properties hold, and all
betweenness properties are valid. The angular measure m for this geometry
uses the usual angular (protractor) measure my; from the Euclidean Plane,
where 0 < m,; £A < 180e, for any ZA and the usual interior of an angle,
Int,. Since angles are the union of noncollinear rays, with the same endpoint,
no angle has the origin as its vertex. If A (# 0) is the vertex of an angle,
then since the rays of an angle must be noncollinear, the rays can not be
opposite rays with endpoint at A. In fact, an angle must be of the form
£BAC = ABUAC, where 0 is between A and B and 0 is between A and C
as shown in Figure 2.

7 Figure 2.

We define, m ZBAC - m £BOC, whenever AgInt,<BOC; m£BAC -
3600 - my£BOC, whenever A elnt;ZBOC; and finally m #/BAC = 1809,
when mZBOC = 1800 as shown in-Figure 3 ab,c. All of the expected
properties of angular measure are valid for m, such-as-the axioms for angle
construction, angle addition, and angle subtraction.

[

b.
Figure 3.

TEXAS MATHEMATICS TEACHER
VOL. XL (4) October 1993




20

A ABC
Figure 4.

2. Properties of the Radial Plane Geometry.

Many geometric axioms are satisfied in the Radial Plane, such as the
Ruler Axiom. (i.e. Every line has a distance preserving coordinate system.)
Also, all betweenness properties and angular measure properties are valid.
This geometric model serves as a powerfully instructive example of how the
failure of one incidence axiom and the Plane Separation Axiom cause
practically all of the standard geometric properties to fail. Several of the
standard properties which fail in the Radial Plane are exhibited in the
following presentation. While two points on the same ray with endpoints at
the origin are contained in infinitely many different lines, two points which
are not on the same ray with endpoint at the origin are contained in a unique
line and every pair of points determines a unique interval. It is clear, as in
Figure 4, that the sum of the measures of the angles in any triangle is 3600,
Triangles do not have exterior angles. There are no trapezoids or
parallelograms, because there are no parallel lines.

The triangle congruence and similarity properties are rather interesting,
In Figure 5, AABC corresponds to A A'B'C' in such a way that side-side-
side are congruent to the corresponding side-side-side and A ABC is not
congruent to A A'B'C'. Regarding other congruence properties, observe in
Figure 6 angle-side-angle-side-angle-angle in AABC are congruent to the
comresponding angle-side-angle-side-angle-angle in  AA'B'C', but AABC
is not congruent to A A'B'C'. Observe that the case ASASAA, includes
each of the cases ASA, SAS, SAA, SSA, and AAA. Thus, no congruence
theorems are true for the Radial Plane.
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No 888 No ASASAA
Figure 5. Figure 6.

In Figure 7, AABC corresponds to AAB'C' in such a way that angle-
angle-angle are congruent to the corresponding angle-angle-angle, but AABC
1s not similar to A AB'C' and in Figure 8, side-angle-side-side-side
comespond in such a way that corresponding angles are congruent and
corresponding sides are proportional, but AABC is not siFilar to AAB'C'.

4

B

No SASSS
Figure 8.

equiangular does not imply equilateral . - equilateral does not imply equiangular

Figure 9. Figure 10.
Recall that a quadrilateral JABCD is a Saccheri Quadrilateral provided:
mZB = mZC = 900 and AB = CD. Saccheri proposed that quadrilaterals
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such as this could be proven, without using Euclid's Parallel Axiom, to be
rectangles. He proposed that this would show that this parailel axiom could
be proven from the previous axioms. In this geometry, with no parallel lines,
Saccheri quadrilaterals are rectangles, because the upper base angles ZBAD
and ZADC are also right angles, the diagonals, DB and AC, need not be
congruent, and the upper base AD may be longer, or shorter, or congruent to
the lower base BC. These possibilities for Saccheri quadrilaterals DABCD
are illustrated in Figure llab.c.

BC=5AD=3 BC=3,AD =3

a. b. c.
Figure 1.

The Pythagorean Theorem fails.
Figure 12.

Recall that a convex set S has the property that if P and  are any two
points in S, then PQ < 8. The Plane Separation Axiom [1] can be stated as:
if L is a line in a plane E then 1.) E-L is the union of two disjoint convex
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sets H, and H, and 2)) if PeH, and QeH,, then PQ ~ L # 0. The Radial
Plane fails to satisfy this postulate, because H; and H, are not convex as seen

in Fi 3.
in Figure A,

0
PQ ¢ H,
Figure 13.

In {1] the side-angle-side axiom is used to prove the triangle inequality.
In this geometry we see that the distance function d satisfies the triangle
inequality and this does not imply the side-angle-side congruence property.
Recall that a circle with center at point A and radius r is the set of all points
in a plane containing A, which are r distance from A. Consider, in Figure
14a, the intersection of the circle C, with center at (1,0) and radius 3 with the
circle C, with center at (-1,0) and radiuvs 3 (different circles that intersect in
infinitely many points) or, in Figure 14b, the intersection of C, with the circle
C, with center at the origin (0,0) and radius 3 (nonintersecting circles of
radius 3 with distance between their centers equal to 1). The equations which
determine the coordinate values of the points on the graphs of conic sections
in the Euclidean plane are not valid in this geometry, because of the
inadequacy of the Pythagorean theorem to determine distances. However, by
using the definitions of the conic sections, the reader may find the
detenmination of the graphs of ellipses, hyperbolas, and parabolas will provide
a good analytic geometry exercise in the application of the non-algebraic
definitions of the conic sections. Here we mean the definition in terms of
constant sums (ellipses), constant differences (hyperbolas), and equidistant

from a point to a line (parabolas). e~

™
sf: |
\

)
o

e

R TR o

Figure 14.
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3. A Comparison and an Example.

The radial plane geometry may seem unnatural and not very "geometric."
However, its properties are at least as natural as, and may be compared with,
the geometry of the earth (sphere). In fact, these two geometries are similarly
generated from intersections of flat planes with common surfaces in three-
space. The lines in the geometry of the sphere are generated as the
intersection of the sphere and (flat) planes passing through the center of the
sphere. Similarly, every line in the radial plane is the intersection of a cone
and a (flat) plane containing its apex and a point in its interior, as in Figure
15. This intersection is the union of two elements of the cone. Notice that
the elements of the cone are also the paths along which one would measure
the distance between point A and B on a cone, if a straight ruler must be
placed on the surface of the cone such that the ruler touches all points
between the points used to determine the distance. Thus, if A and B are on
the same element (ray), then the ruler simply lies along that element (ray).
However, by this rule of measurement, to measure from A to B, where A and
B are not on the same element (ray), the apex of the cone must be used in
this case as the intermediate measuring point, that is, A to O and then O to

Figure 15.

Using the segments formed from these lines, the AABC on the cone
appears in Figure 16, which when viewed from the apex of the cone, in the
direction of the centetline of the cone (that is the projection in the xy-plane),
is just the AABC in the radial plane.
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O

- Figure 16.

Since these geometries are similarly generated by intersections with flat
planes, it is important to méntion some of their similarities and differences as
axiomatic systems. The axioms which fail in the geometry of the sphere are:
the "two points determine a unique line" incidence axiom, the very important
Ruler Axiom, and the SAS Axiom. However, the powerful Plane Separation
Axiom is true in the sphere. The Radial Plane also fails to satisfy the "two
points" incidence axiom and SAS. The interesting difference is that it
satisfies the Ruler Axiom and fails to satisfy the Plane Separation Axiom.
Hence, the Radial Plane does serve as a legitimate alternative to the model
for the sphere. :

The exciting observation that can be made, in the following example, is
that these elements of the cone are the graphs of the paths of the photons
along the three-dimensional Minkowski light cone [2, page 161]. The
Minkowski light cone is the graph in space-time coordinates of the position,
in space, of a photon produced by a flash of light as a function of time.
Suppose that the light travels at onie unit distance per one unit time. If the
light flashes at the origin in two-space at time, t = 0, then at t = 1, the
photons form: a ring in the plane of radius 1, centered at the origin. Since the
speed of light is constant, this event is recorded on the Minkowski light cone
in three-dimensional space-time coordinates, as shown in Figure 17.
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Photon Ring
Figure 17.

With this induced geometry, the projection to the plane of this
Minkowski light cone, is the geometry of the radial plane. Extending this
idea to the Minkowski light cone in four-dimensional space-time, where the
light flashes at t =0 in three-space, we see that the radial geometry in three-
space is the projection of the four-dimensional Minkowski light come
geometry, from the apex in the direction of the centerline. Accordingly,
Figure I8 illustrates the projection of a A ABC. from the four-dimensional
light cone, three space coordinates and the time coordinate, into the three-

dimensional radial geometry. z
A
B~
\\
~ Y
fs) o
\
\
\
\
xf AABC \c
Figure 18.

Also, depending on your version of reality, events in the past (that is, on
the negative time cone) could be represented by multiple representations of
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points in the radial geometries using + and - subscripts. for example, the
[0A,B.C,D, has vertices A, C, and D on the future cone and the vertex Bis
on the past cone, as in Figure 19.

Figure 19. -

In closing, I hope that the readers of this little note will enjoy tinkering
with this geometry as much as | have enjoyed its development. When you
discover some neat fact that [ have missed, please share it with me for
inclusion in future communiecations. I do not think this is just another
artificial example of a geometry. I think it is as important as the classic
example of the geometry of the sphere. It is naturally generated from
intersections of planes and cones, in a manner analogous to the sphere.
However, it satisfies different axioms than the sphere, and thus provides an
alternative view of the interactions of axiomatic systems, as reported in the
comparison earlier.

I would like to thank my friends, Professor Jose Garcia, Escuela de
Matematica, Universidad de Costa Rica and Professor Stephen Fulling,
Department of Mathematics, Texas A&M University for introducing me to the
Minkowski light cone.
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FOCUS ON FACTORING

Deborah A. Cochener

Department of Mathematics
Austin Peay State University
Clarksville, Tennessee

Occasionally every teacher encounters a student who seems completely
baffled by a particular algebraic skill, such as factoring trinomials. Such a
student will often benefit by following a structured method while he or she
is struggling to learn the skill. The premise of this article is that even the
weakest algebra student can succeed at factoring if presented with a
systematic procedure that can be applied to every case. With that in mind,
this article presents a collection of classroom tested factoring methods for
trinomials in the form ax® + bx.+ ¢ where a, b and ¢ are integers and a > (-

AC Method

The first of these methods for factoring trinomials is called the AC
Method. This method is based on the following theorem:

ax® + bx + ¢ is factorable if there exist integers m and n
such that mn =acand m +n =Db. .

Using this theorem, consider the factorization of 24x* - 7x - 6. Integers m
and n are needed such that mn = (24) (-6) = -144 and so that m + n = -7.
Begin by factoring -144 and considering the sum of each pair of factors.
Since both the sum and the product of the factors must be negative, only the
factors of -144 which satisfy both of these conditions have to be considered.
(Note that this excludes cases where both factors have the same sign and
cases where the factor with the smaller absolute value is negative. These
cases would produce positive sums.)
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Table 1

Product Sum
(-144) (1) -143
-72) (2) -70
(-48) (3) -45
(-36) (4) -32
(-24) (6} -18
(-18) (8) -10
(-16) (9) ‘ -7

According to the theorem, the trinomial is factorable because there exist
integers -16 and % whose sum is -7 and whose product is -144. Now rewrite
24x* - Tx - 6 as 24x* - 16X + 9x - 6 (encouraging students to write the
negative term first to avoid sign errors), and factor by grouping. (This is a
technique which few high school algebra texts introduce prior to trinomial
factoring but which is presented early in the study of factoring in
developmental mathematics courses at the college level)

24x* - 16x+9x -6
= 8x (3x - 2) + 3(3x - 2)
=(3x-2) 8x +3)

Students who were previously successful with factoring by grouping not only
tended to have a high success rate with this method, but were later able to
adopt the trial and error method as a means of increasing factoring speed.

Box Technique

The second method for factoring trinomials to be considered is called the
Box Technique. The Box Technique is based on a multiplication table and
the theorem used for the AC method: This method works well with four term
polynomials that are traditionally factored by grouping, as well as with
trinomials in the for ax? + bx + ¢ (a # 0) that are traditionally tanght by the
trial and error method. Consider first the binomial product (x + 7) (x + 5).
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This product yields x* + 7x + 5x + 35 by the FOIL method, and simplifies
to x*+ 12x + 35, Now multiply the same factors using a multiplication table
(see Figures 1 and 2),

MULTIPLY X +5
X
+7
Figure 1.

and note the properties that oceur.

MULTIPLY X +5
X X 7 51:
+7 . Ix . k 35
Figure 2.
1. The products of the diagonal shaded boxes are equal: (x (35) =
(7x) (5%)

2. The sum of the diagonal boxes containing the linear terms produces
the linear term of the trinomial: 7x + 5x = 12x

3. The terms of the original factors {(bold faced characters) represent
the greatest common factor for that particular row or column.

To see how these properties can be used to factor a trinomial, consider
4x* + 16x + 15. Begin by locating the quadratic term and constant term in
the shaded boxes, with the quadradic term being in the center-most box (see
Figure 3).
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MULTIPLY

4x?

15

Figure 3.

Separate 16x into two addends whose product is 60x” (remember, products of
diagonals must be equal), and place these two addends in the remaining
diagonal boxes. The terms to consider are:

Table 2
Terms Sum Produet
15%, x lex 15x*
14x, 2x 16x 28x%*
13x%, 3x 16x 39x?
12x, 4x 16x 48x?
1ix, 5x 16x 55%%
10x, 6% 16x 60x2

Since 10x and 6x produce the desired sum of 16x, as well as the desired
product of 60x°, the search is terminated. Place these two terms in the
remaining pair of diagonal boxes (see Figure 4}.

MULTIPLY
e 6x
10x o 5
Figure 4.

Now factor the greatest common factor from each row and column (see
Figure 5).
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MULTIPLY T2 +3

2x 4x? 6%

+5 10x 5
Figure 5.

The factorization of 4x® + 16x + 15 is now found in the first row and first
column: 2x + 3) (2x + 5).

Now factor 9x? - 23x - 12 by the box technique, and observe the behavior
of negative terms in a trinomial. After placing the quadratic term and
constant term in the appropriate boxes (see Figure 6), note that this cross
product is =108x>

MULTIPLY

9y*

Figure 6.

The terms whose sum is -12x must also produce a cross product of -108x%.
Sums whose terms are both negative or both positive can be excluded since
the product must be negative. Also, the term with the largest absolute value
must be negative to guarantee a negative sum. Thus, the sums to be
considered are:

Table 3
Terms Sum Product
-24%, % -23x -24x
-25%, 2x -23x -50%?
-26x, 3x -23x -78x?
-27x, 4% -23x -108x?
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9x* 4x
-27x -12
Figure 7.
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The desired sum is -27x + 4x. Before factoring the greatest common factor
from each row and column, the box will look like the box in Figure 7.

After factoring the GCF from each row and column, the factors of 9x* - 23x
- 12 are determined to be (9% + 4) (x - 3). (See Figure 8.)

MULTIPLY 9x +4

x 15%* 4x

-3 -27x -12
Figure 8.

Students who preferred this technique did so because they felt it was
easier to find terms that yield a specific sum than to search for factors that
yield a specific product. This was especially true in the cases where the
trinomials had a large leading coefficient and/or constant term.

Substitution Technigque -

The last factoring method to be considered is the substitution technique.
Since students rarely seem to have difficulty factoring trinornials of the form
x* + dx + e regardless of the size of d and e, the purpose of this technique is
to allow the student to convert every trinomial of the form ax® + bx + ¢ (a>0)
to the form x? + dx + e through substitution. To apply this technique, rewrite
the trinomial 6x* - 31x + 35 to produce a perfect square for the leading
coefficient. (Multiply by 6 or, in general, by the "a" value). This produces
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6% - 6(31x) + 210. Rewrite as (6x)* - 31(6x) + 210 and substitute z for 6x.
Now factor the trinomial z? - 31z + 210 by searching for factors of 210 that
have a sum of -31. The following algebra steps return the student to the
factorization of the original trinomial.

1. Factor the trinomial in z: (z - 10) z - 21)
2. Substitute 6x for z: (6% - 10) (6x - 21)
3. Factor GCF from each binomial: 2(3x - 5) - 32x - 7)

=6(3x-5(2x -7

Since the original trinomial was multiplied by 6, the factorization of 6x* - 31x
+351s ((3x - 3H(2x - 7). An alternative arrangement would be to have the
student set the problem up as follows:

Gr* - 3Lx + 35 =6(67‘"21-“35)

_ (6 - 31(6x) + 210
T 6

2.
- Z___3_1:_+_2_19,whenz is substituted for &

_ (z - 10z - 21)
6

- Q:_@ls(ix_'_z.‘l, when Gx is substinuted for 2

2% -5-3@x-7)
6

=@ -7
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Conclusions .

These techmiques have been used successfully with college level
developmental mathematics students who have had difficulty with the trial
and error method of factoring trinomials. The majority of thus group of
students seem to prefer the box technique. This may be due to the fact that
it is less algebraic in nature than the other methods discussed here. Non-
traditional students, who may have seen trial and error factoring in the distant
past, seem to opt for one of the other two methods, perhaps because they feel
that these methods expedite the factoring process. Many of the students who
are adept at trial and error factoring will be reluctant to leave behind
comfortably familiar territory in order to try a new technique. However, even
students who are comfortable with trial and error factoring are encouraged to
try at least one of the structured techniques in order to gain a different
viewpoint on the process of factoring trinomials. Thus, each student in the
class, regardless of background, will benefit in some way from including
these structured formats in a discussion of trinomial factoring.
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