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/oredio!enf % meddage

(Substitute Contributor)

Importantly and briefly, let us say . . .

All members should concentrate on the increase
in membership in Texas Council of Teachers of
Mathematics by encouraging every mathematics
teacher in his/her building to send in membership
dues now, for next vear, to the treasurer, whose
address is given on the back of this journal. If

membership forms are needed, xerox the form
printed herein and have fellow teacher complete
to mail. We need to promote an increase in mem-
bership now!! You can help us!!

Place on your calendar the following date:
November 2-4, 1978 — CAMT, Austin

Polynomial Equations and the Pocket Calculator

Sally L. Lipsey
Brooklyn College of the City University of New York

The purpose of this paper is to describe two
classroom uses of the pocket calculator which I
found successful in teaching about polynomial
functions. The first is an approach to synihetie di-
vision via synthetic substitution, leading to ideas
in the theory of equations. The second shows how
easy it has become to use a formula for solving
cubic equations; in addition, this formula provides
an opportunity to demonstrate the usefulness of
complex numbers.

We generally solve polynomial equations of de-
gree greater than 2 by a procedure involving re-
peated substitutions of intelligent guesses. Obvi-
ously, the pocket calculator makes the computa-
tions more palatable. Students were able to carry
out the iterative procedure far enough to find ir-
rational zeros of polynomials to a required decimal
place without losing patience before attaining an
understanding of the process.

There are other benefits from the use of the cal-
culator. Firstly, the effort of searching for the
most efficient method of carrying out the substi-
tutions led us to a useful but unconventional kind
of factoring. For instance, one of our problems was
an example of substitution with averaging, We
were dealing with the equation

P,(x) =x*4 x* — 3x2 4 3x —1 =0,
We noted that £f(0) <0 and £(1) >0 and con-
cluded, by the Intermediate Value Theorem, that
there was a real root in the interval (0,1). Our
goal was to locate this root, x, correct to 2 deci-
mal places. We let x; represent the jth approxi-
mation, with x, = 0.5.

It was a nuisance to compute:

(0.5)% + (0.5)% — 3(0.5)2 -} 3(0.5) —1
on the simple pocket calculator that the students
carried, because each term had to be computed
separately and then the results combined. We
learned to make repeated use of the distributive

law as follows:

Px=(x+x2—3x43)x—1
=[(x2Lx--3)x4+3]x—1
={((x+1x—-3)x4+3]x—1

This last line, the nested form of P,(x), gave us

an efficient method (synthetic substitution) for

finding P,(0.5) or P,(c) for any value of c. With
synthetic substitution, the keys we touched in suc-
cession to find P, (0.5) were:

0.5, +, 1, x, 0.5, —, 3, x, 0.5, +, 3, 0.5, —, 1, =

Using synthetic substitution, we closed in on
the root quickly, substituting the midpoint of each
interval in which we found the root must lie:

X, = 0.75, x, — 0.625, . . ., x, — 0.554 and

x —= 0.55. Synthetic substitution was, of course,

also helpful in finding rational roots,

In finding P (¢), no recording of intermediate
results was necessary. It was interesting to see,
however, that when we did record the intermedi-
ate results, further helpful information became
available. As an example, let

P.(x) == 2x% — 172 | 38x — 15.
Then P,(c) = [(2¢ — 7)c 4 38]c — 15, in nested
form. The intermediate results of the computation
were 2c¢, 2c—17, (2¢ — 17)¢, etc. We wrote the
coefficients in order and recorded the results of

the operations indicated. The following table
emerged:

cl 2 17 38
2c (2¢—17)¢c -
2 (2¢—17) (2¢c — 17)c -+ 38
—15
Y ((2e—17)c 4-38)c

—(2¢ —17)c + 38]c — 15 = P, (c)

By long division of 2x* — 17x* 4 38x — 15
by x — ¢, we “discovered” that P,(c) was also the
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remainder of the division process and that the co-
efficients of the quotient had been found auto-
matically.

2x2 1 (2c—17)x 4+ [(2¢—17)c | 38]

x-c} 2% —17x 4+ 38x — 15
2x3 —2cx2 '

(2c—17)x2 4+ 38z
(2e—17)x2 — (2c—1T)cx

[(2¢—17)c 1 38]x — 15
[(2¢—17)c + 38]x — [(2c—17)c +-38] ¢

[(2¢e —17) c+38]c— 15

The connection between substitution and divi-
sion was further illuminated by writing
P, (x) — P.(c) as a product of {(x—c) and Q (x)
Thus P, (x) = 2x3 — 17x% 4 38x — 15 and
P, (¢) =2 — 17¢%2 4 38c — 15. Hence

P,(x) — P, (c)

=2(x3 — ) —17 (x2 —c*) 4 38(x —¢)

= (3 —c¢) [2(x2 4 x¢c 4 ¢?) — 17 (x 4+ ¢} + 38]
=& —c¢) [2x2-(2c — 17}x 4 ({2e —1T)c + 38)]
=(x—c) Q ().

Now P, (x) = P, (¢) 4+ (x-¢} Q(x). Finally this
showed that the quotient and the remainder resul-
ing from the division of P, (x) by (x-¢) may be
found by the synthetic substitution (hence also
called synthetic division)} process, Formal proofs of
the remainder theorem and the factor theorsm
were then interesting and reasonable.

Tterative procedures are, of course, unnecessary
in the case of quadratic equations since we have
a convenient formula for finding the roots directly.
Now, with the help of the pocket calculator, the
Tartaglia-Cardan formula for the solution of cubic
equations is no longer inconvenient to use, at
least for those students who have learned the ele-
mentary operations with complex numbers. In a
more advanced class, it was possible to show, with-
out resort to differential equations or physical ap-
plications for which the students were unprepared,
that imaginary numbers are useful in solving prob-
lems whose real solutions involve reql numbers
only.

Let a,t* + a,t* + at + a, = 0, where a, = 0.
If we divide each term by a, and replace t by x
— a,/3a,, we reduce the original to an equation
with no second degree ferm. Thus every cubic
equation can be written in the form x* — ¢x + d
= 0. It is easy to solve this equation. Let x =u

— v, where uv = — ¢/3. Replacing x by u — v
and simplifying, we have w* — v¥ 4~ d = 0. But
v = —c¢/,u, so that 27u® 4 27 du® 4+ & = 0.
By the quadratic formula,

ut = —14d 4 Lidz — ¢3/27.

Now v? = u® - d may be found. Since x = U - v,
we have the following solution for every cubic equa-
tion of the form %3 -~ cx 4 d = 0.
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x =/ —%d +VQ 4 —%hd —Q,

where Q = 14d? — ¢8/27. If Q is negative, imagi-
nary numbers will always appear in the process of
finding the solution.

Example 1. Let x®* — 3x 4+ 1 = 0. Thus ¢ = 3,
d:l,andQ:— 3/4.
Thenx:,\'”/ — 1% A3 -|-,\?/ —1 — A3
(substitution for d and Q)

=3/~ + in/3/2 4/~ —i A/T/2
(Simplification of square roots)

=3/ cos 120° - i sin 120°

—|—,\3/ cos 120° — { sin 120° (polar form)

(cos 400_+ i sin 40°) 4{cos 40° — i sin 40°)
(principal root)

=  2cos (40° J k*120°),k =0, 1, 2.
(general solution)

The decimal values of the 3 roots are 1.532,

—1.879, and 0.347. A check is easily done, using

the nested form. In each case, (x2 — 3)x + 1
= 0.00

Example 2, Let x* — 5x + 1 = (. Thus ¢ = 5,
— 1 and Q = 4.380.

Then x =

N —V% 4 A/~L3B0 + A/ — 1 —A/— 4.380

= &/ —0.5 -4 2.093i 42/ —0.5 — 2.093

= &/ 2.152 (cos 103.433° + i sin 103.4339) +

A/ 2.152 (cos 103.433° - i sin 103.433°)

(1.291) [{cos 34,478° | isin 34.478°) +
(cos 34.478° — isin 34.478°)]

=2(1.291) cos (34.478° 4 k « 120°).

Here, the 3 roots are 2.128, -—2.330, 0.202. Check-
ing, we find that (x* — 5)x 4+ 1 = 0.00.

Having had success in using the pocket calcula-
tor as an aid in motivating and expediting the
study of topics in the theory of equations and else-
where, I am convineed that it is going to be inte-
grated into the curriculum at a rapid rate. 1 be-
lieve that the calculator will give us a new and re-
freshing perspective; the result is likely to be a
more stimulating curriculum.
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Problem Solving Heuristics in the
Teaching of Series

By Walter Szetela

University of British Columbia, Vancouver, British Columbia

In the study of sequences and series, typically,
students are given little time to develop formulas
as they are deluged with symbols for the first
term, last term, number of terms, common differ-
ence, common ratio, and sum, Almost as soon as
a sequence is defined, the student is virtually given
the nth term formula for an arithmetic sequence,
and soon after he is shown the standard deriva-
tion of the sum formula for an arithmetic series.
Usually the students are told the story about
young Gauss who obtained the sum of an arithme-
tic series in a twinkling but they themselves share
little in development of such formulas. Students
then practice the use of the formulas which es-
sentially involve manipulations of symbols, n, a,
d, L, r, S. There is little opportunity to study pat-
terns, make conjectures, generalizations, or other-
wise engage in mathematical thinking and problem
solving.

Providing the students with such formulas is
an efficient method for obtaining answers. It fails
-to develop problem solving skilis.

The main goal of this article is to show how
Series sums can be found using problem solving
heuristics, Polya made the term heuristic promi-
nent in mathematics instruction in his widely read
work, How to Solve It (1945). It has been inter-
preted in different ways, but Polya defines heu-
ristic reasoning as “reasoning not regarded as final
and strict but as provisional and plausible only,
whose purpose is to discover the solutiom of the

present problem.” Higgins (1971) cites Geleunter.

and Rochester on the difference between algorithm
and heuristic. “A heuristic may lead us to a blind
alley . . . If a method does not have the charac-
teristic that it may lead us astray, we would not
call it a heuristic but an algorithm.”

A natural beginning for the study of sums of
series is the series of natural numbers. Let the
students play with, think about, and search for
different ways to find the sums of series like:

(1) 1+2+34+4+54+6+7+38
(2) 1-+243 4+ ...+98 + 994 100
3)14+2+34... 41

Some students less gifted than Gauss may dis-
cover shortcuts to find sums of such series. They
may make use of the average value of the terms.
Some may even notice the equal sums of sym-
metrical pairs of terms. Both methods are forms
of Polya’s heuristic of symmetry.

A logical successor to a natural number of series
in a series of even numbers:

(4) 24+ 44648 4+104 12414 +16

Nothing need be said about arithmetic series or
common differences or last term. Students may see
the analogy between this series and the natural
number series so the methods for discovering a
shortcut for this sum include those used in the
natural number series, Students may observe that
the terms of the second series are twice the cor-
responding terms of the first series. They will con-
jecture the second sum to be twice that of the
first. More generally, if they have discovered that
the sum of n terms of the first n natural numbers
n? + m, it will be evident that the sum of the first
5 .

n even numbers ought to be n? 4 n. When stu-
dents make conjectures, they are motivated to
prove conjectures. Again, by symmetry and ana-
logy students should have time to discover a short-
cut for the summation of:

5y 1434+544T+...415
and more generally for:

(6) 14+34+5+...+2n—1

When they obtain the sum of the first n odd
numbers as n?, they again have the opportunity
to compare the result with the analogous series of
even numbers. The result is n less than the sum of
the first n even numbers. Is this reasonable? Note
that each term of the odd numbered series is one
less than the corresponding even numbers, and
since there are n such numbers, the answer should
be less by n.

At this point, if students have been given
enough thinking, guessing, and pattern-observing
time, they could be presented with any arithmetic
series and produce the correct sum without the
“symbolic noise” that produces a kind of mathe-
matical nausea among students who have been
bulldozed into formulas too rapidly.

Series with general term 1 provide useful wve-

hicles for teaching other problem solving heuris-
tics. '

Consider first the special case:
(M B+ YU+%...4+ %
The useful heuristic here is extreme cases. We re-

duce the problem without destroying the gist of
the problem, Let students be given time to sum
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each of these series in turn:

(a) % Sum is 14
(b) 1+ Y% Sum is 34
{c) %+ 14 + % Sum is %

Allow students to observe the pattern of sum and
invite them to make a conjecture about the “next”
series sum. Then let them test the conjecture. It
seems reasonable to expect that students can gen-
eralize from the pattern of partial sums to obtain
a conjecture for the sum for series (7). Students
would treat the result 2° — 1 as entirely credible
2n

and perhaps be more activated to prove the con-
jecture. The result may be appreciated more than
the formula S — El—a:_
and given to the students in a lump too much to
swallow with too little time to digest.

It is now natural to move to analogous cases
like series with general term 1/3", 1/4", etc. The
aim would be to eventually make a generalization
of series with general term 1/p®. Consider:

(8) 1/3-1/9 + 1/27 ... + 1/3®
and
(9) 1/4+1/16/1/64 + ...+ 1/4n.

For (8) the sequential patiern of partial sums
(heuristic of extreme cases) is

1/3,4/9,13/27,...
and for series (9) it is
1/4,5/16, 21/64, ...

. Given time to observe and think, one can expect
students to volunteer the next terms in each pat-
tern of sums. Powers of 3 and 4 in the denomina-
tors are almost obvious. The numerators are not
obvious but students should have the chance to
make conjectures. All conjectures should be tested.
After several successful conjectures comes the gen-
eralization conjecture. We can summarize the con-
jectured sums for series (7), (8), and (9) as fol-
lows:

which is usually derived

(7) Sum — 2"2‘;1
1 1)
(8) Sum = 'é— n
1 (@ 1)
9 Sum= 7 £

Inductive reasoning leading to generalization con-
jectures has been used to obtain each of these for-
mulas. Another conjecture could now reasonably
be made or the series with general term 1/5%, lead-
ing to a conjecture for series with terms 1/pm.
Students should be cautioned not to infer cer-
tainty from plausibility, Confirmation of a con-
jecture is not a proof.
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Having made a generalization we can sometimes
gain even more from the solution of a problem
by using the heuristic of extension, which goes
beyond the solution to consideration of a related
but more difficult problem or to a broader gen-
eralization, An imporiant extension of results with
series of type 1/p" is the consideration of series
of type p*. We first use the heuristic of special
cases and look at the series:

(11) 142 + 448416 4 ... + 2=

Next, using successive extreme cases of this special
case we obtain the pattern of the sequence of
sums as:

1,3,7,15,...

By inductive reasoning students may conjecture
that the fifth partial sum is 31 and that the nth
partial sum is 2* — 1. The easy solution for series
(11) should encourage students to sum the ana-
logous series:

(12) 143 + 9427 ... + 3=

Here students will meet some frustration in using
the heuristic of extreme cases which previously
worked so well. Again, we are reminded that a
heuristic may lead us to a blind alley. We are
solving a problem, not using a can’t miss algorithm
in an exercise. The student’s first guess might be
a conjecture that series (12) has sum 3= — 1.
It is a reasonable conjecture based on analogous
series (8) but it is soon checked out and rejected.
Where do we go from here? Perhaps we could use
Polya’s heuristic of “looking back and re-examine
the result.” The initial conjecture of 3 — 1 does
not work as with n = 4, the result is 80 whereas
the actual sum of four terms is 40. But the con-
jecture is precisely twice ag big as required. Try

ar— 1.
2

The conjectured formula gives 121 for n = 5
which is the actual sum of the first 5 terms. At
this stage it will be interesting to see what conjec-
tures they will make for:

(13) 1 +44 1664 +,.. 4 4
All conjectures should be tested, even unreason-
able ones. When conjectyres are successfully
tested, students may be ready to generalize to
series with general term p~i If they have been
given time to conjecture and confirm in several
cases, observation of the special cases for p = 2,
3, 4, and 5 should strongly suggest a conjecture for
the general case. The sums for p = 2, 3, 4, and 5
are respectively:

21,831, 401,51
1 2 3 4

This sequence of sums should readily suggest the

n

—1
Bﬁ——_lfor the general case 1 + p 4
PP+ DS ... DM

Does it work for n = 5?

conjecture




What has been suggested so far are thinking,
reasoning, conjecturing, confirming, and generaliz-
ing experiences with series. However, although we
have looked omnly at arithmetic and geometric
series thus far, we have not given the students
the formulas for arithmetic or geometric series. We
have tried to give students the opportunity to dis-
cover some formulas to increase their motivation
to observe, search, and conjecture, instead of mak-
ing them manipulators of symbols in formulas.
It is therefore quite natural to introduce series
which are neither arithmetic nor geometric, yet
may be approached by heuristics similar to those
already used. At this stage the teacher may choose
a class of series such as the following:

1 1 1 1
4) et oxsT3zda 4z T
1
n(n + 1)
1 1 1 1
I8 5y 1xgTexg Tex0+
1
2n(2n + 2)
%~ 4 Lt 1o
(16) 733 3% T 5x7 7xot T
1
(n—1)(2n+1)
Ly 1oy 1 ! et
AN x2 ¥ ax7 7x10 " Tox13 T
1

(3n—2) (3n + 1)

The sums of these series do not at first glance
appear to be promising for easy summation. Yet
each of them yields readily to the heuristics of
extreme cases, with conjecturing, verifying, and
generalizing to the nth sum, and extension to dif-
ferent but analogous series. Series (14) with par-
tial sums %, 2/3, 3, invites conjecture almost im-
mediately. Series (15) may suggest several ap-
proaches. The extreme cases give partial sums of
1/8, 1/6, 3/16, 1/5 which looks unpromising. It
would be more promising if written in the form
1/8, 2712, 3/16, 4/20 but a more reasonable ap-
proach to series (15) would be using the heuristic
of analogy or related problem. A comparison of
denominators should reveal that denominators in
series (16) are 4 times denominators in series (15).

A look at series (16) shows the analogy with
either series (15) or (14). Extreme cases lead to
the partial sums pattern:

1/8, 2/5,3/7,4/9, ...

from which a plausible conjecture easily arises. It
is interesting to note that if a calculator were used
to find partial sums, the decimal sums would not

suggest reasonable conjectures as obviously as
sums in fraction form,

For series (17) we can use Polya’s heuristic “use
a result to solve another problem”, another form
of extension. We note that series (17) is ana-
logous to seties (14) and (16). Look at the re-
sults for (14) and (16), and conjecture the sum
of (17),

1 1 . n
(14) 1x2+“'+n(n+1) Tn + 1
1 n
U8 ozt oD Gar D ot 1
1 1 —229
Wt T m—o e+

It is not implied that investigations of series
always produce reasonable conjectures for sums
so readily. The following series all are related in
some way to series (14) through (17), and yet
the heuristics used thus far would not enable the
investigator to find the sums.

1 1 1 1

) 3etsxatsxe T T@m oD @
1 1 1 1

(19) 1x1+2x2+3x3+'”+nxn

(20) 1 — 1/2 + 1/3 — 1/4 + 1/6 — . ..
+ 1/n(n — 1) =4

Yet, although the actual sums are different to
find, students can use the results of the related
series (14) — (17) to determine bounds for the
sums of each of the series (18) — (20). They also
provide experiences in obtaining partial solutions
to problems.

Presenting the student only with risk free algo-
rithms and formulas inhibits his problem solving
stance. When teachers provide experiences with
problem solving heuristics, students may achieve
mote success in solving problems. A study by Men-
doza (1975) demonstrated that students who were
taught the heuristic of cases and analogy used
these heuristics in novel problems significantly
more than control groups who were taught content
without heuristics.
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Effects of the Metric System and Hand-Held
Calculators on the Sequencing of Concepts in an
Elementary Mathematics Program

Marijane Werner

Associate Professor, Kent State University

Today mathematics curriculum development
focuses on issues largely ignored during the 1955-
1970 period of “modern math.” Responding to the
concerns of classroom teachers, as well as educa-
tors and laymen interested in the basic goals of
general education, attention has now shifted to the
impact of metrication and the extensive use of
minicalculators on traditional sequencing of math
concepts at the elementary level. Greater concern
is being directed toward programs for the less able
students, for minimal mathematical competencies
for effective citizenship, and to the interaction of
mathematics and its field of applxcatzon (NIE and
NSF, 1977).

The simultanecus appearance of the metric
system and hand-held calculators on the educa-
tional scene in the USA has mandated a careful
rethinking of the content and the sequencing of
that content in a mathematics program for ele-
mentary school children. For years mathematics
teachers have been attracted to the elegant sim-
plicity of the Systeme International d&’ Unites
(SI), commonly known as the “metric system.”
The adoption of SI (the Metric Conversion Act)
in the United States on December 23, 1975, and
the subsequent implementation of the metric sys-
tem involve the use of a new set of base units
(meter, liter, gram) which are interrelated by mul-
tiples of ten and are easily expressed by the deci-
mal system. The shift to decimal representation
of measurements suggests a striking change in the
importance of traditional arithmetic skills with
the fraction symbol. Traditionally, operations with
rational numbers expressed as fractions require
skills that are so often stumbling blocks for stu-
dents through junior high school. On the other
hand, arithmetic skills with decimals are fairly
easy for elementary students because decimals
build on the concept of place value and algorithms
for whole number operations. The shift in the se-
quencing of decimals before fractions is long over-
due. Psychologically, as well as mathematically,
the earlier introduction to and greater emphasis
on numbers represented as decimals, with cor-
responding delay and de-emphasis on the frac-
tional representation numbers, would be an excel-
lent move in the right direction. Concepts ihvolv-
ing the many different types of fractions, least
common denominators, equivalent fractions, re-
writing fractions in simplest form, and so on,
would be postponed until the student is chrono-
logically older and mentally better able to handle

8

mathematical abstractions required to attain skill
with operations on rational numbers expressed as
fractions.

We urge all school systems to give serious at-
tention to implementation of the metric system in
measurement instruction and that they re-examine
the current instructional sequence in fractions and
decimals to fit the new priorities (NACOME,
1975, p. 44 and p. 139). A similar recommenda-
tion was made by Belletallii (1977) to de-empha-
size fractions and emphasis decimals, introducing
them earlier.

The metric system is based on the decimal sys-
tem, like our decimal system of currency. Mul-
tiples and submultiples of any given unit are al-
ways related by powers of 10. Changing from a
greater metric unit to a lessor metric unit and vice
versa simply means moving a decimal point. No
fractions are involved (Consumer Close-Ups,
1976). .

In order to remain competitive in world trade,
the United States had to go metric. By 1978
United States exporters to the nine Common Mar-
ket countries will be required to indicate dimen-
sions in metric units. Trade with other industrial
nations also necessitated conversion to metric
measureinents; at present, 43 couniries are in
various stages of transition to the metric system,
including the U.S., Great Britain, Australia, New
Zealand, Canada, and South Africa.

Surely no other device has had more potentlal
for influencing instruction in mathematics than
the advent of the hand-held calculator and its use
in the elementary school classroom. The challenge
to traditional instructional priorities is clear. The
elementary school mathematics curriculum will be
restructured to include much earlier introduction
to and greater emphasis on decimals, place value
expressed as powers of 10, scientific notation, in-
tegers, squaring numbers, and extracting the square
root of numbers, with corresponding delay and de-
emphasis on operations and algorithms using the
fraction symbol. This change is appropriate to
match the language of instruction to the language
of calculators (NCTM 1977 Yearbook).

While students will quickly discover decimals
as they experiment with caleulators, they will also
encounter concepts and operations involving posi-
tive and negative integers, exponents, square roots,
scientific notation — all commonly topics of jun-
ior high school instruction. For instance, students




may discover from the calculator that the product
of two negative integers is a positive integer. Thus
computational facility with integers (using the cal-
culator) will precede, rather than follow, the care-
ful conceptual development of these concepts.

Personally, I am always pleasantly surprised and
favorably impressed by the reactions of children
when they are asked to use a calculator to verify
the quotients of division examples that have re-
mainders. If the children enter the dividend, then
the sign of operation, the divisor, and then the
equal sign, the quotient registers on the display in
decimal form. If the children are not already fa-
miliar with the decimal symbol, this so-called veri-
fication is meaningless. At this point in time, the
children who recognize the relation of multiplica-
tion and division will suggest an alternate way of
checking the answer. They decide that if they mul-
tiply the divisor (given factor) by the quotient
(missing factor) and add the remainder, they
should obtain the dividend (product). This prob-
lem solving technigue will help to verify the ac-
curacy (or lack of accuracy) of papers and pen-
cil computations. Children who do not understand
the relation of an operation to its inverse opera-
tion will be unable to suggest an alternate method
of verifying a quotient with a remainder when con-
fronted with the display in decimal form.

With the increasing availability of inexpensive
calculators, adults will have less need for paper
and pencil arithmetic computations in the future.
The time that is currently spent teaching elabo-
rate “long” multiplication, “long” division, and
complicated division, and complicated addition
and subtraction of rational numbers expressed as
fractions requiring complicated least common de-
nominators (often with little success) could be
more wisely spent on more relevant, interesting,
rewarding, and motivating topics (NIE, 1976).

The fact that arithmetic proficiency has com-
monly been assumed as an unavoidable prerequi-
site to conceptual study and application of mathe-
matical ideas has condemned many low achiev-
ing students to a succession of general mathe-
matics courses that begin with and seldom pro-
gress beyond drill in arithmetic skills, Providing
these students with calculators has the potential
of opening a rich new supply of important mathe-
matical ideas and at the same time breaking down
self-defeating negative attitudes acquired through
years of arithmetic failure. The re-assurance of
being able to verify the answer to a troublesome
basic fact is sufficient motivation for a slow learner
of math to pursue the algorithms.

The fascination of discovering patterns which
emerge from otherwise “messy” and lengthy paper
and pencil computations is unhampered by the in-
evitable drudgery if hand-held calculators were
not available, An analysis of positions that people
hold regarding the use of calculators in schools
is reflected over and over in published articles. The
most frequently cited reasons for using caleulators

in the schools are:

1. They remove drudgery and save time on te-
dious calculations.

2. Low achievers find computations less frus-
trating,

3. Calculators encourage estimation, verifica-
tion, and approximation.

4. They facilitate understanding and concept
development.

5. They help and enlarge the scope of problem
solving.

6. They motivate and encourage curiosity, posi-
tive attitudes, and independence (an instant
answer key),

7. They exist and are here to stay—so we can-
not ignore them.

The last reason is perhaps the most compelling
one.

Perhaps the greatest concern and one that is
most frequently expressed by parents and by other
members of the public, as reflected by newspaper
articles, is the fact that children will not memorize
the basic facts for all four fundamental operations.
However, very few educators believe that calcu-
lators should be used by children before they have
memorized the basic facts for the fundamental
operations. Perhaps the greatest disadvantage of
using calculators in schools is the fact that they
lead to maintenance and security problems; how-
ever, the advantages of using calculators far out-
weigh this single disadvantage.

To date most research studies about the use
of hand-held caleulators in the schools have been
exploratory. Some of the “hardest” data come from
studies conducted by calculator manufacturers.
Not surprisingly, the findings indicate that stu-
dents (a) can use the calculator with a variety
of content and (b) achieve well when using the
calculator. Many schools are checking data on
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their own students to determine the effect of the
use of calculators. Reports of these studies indi-
cate that using calculators generally results in
achievement at least as high as that which re-
sults when calculators are not used. In some
instances, computation scores are significantly
higher when calculators are used, and in others
problem solving scores are significantly higher
(Bell et alii, 1977).

As each of you reflects upon the curricular
changes that are mandated by the advent of the
metric system and hand-held calculators, I sin-
cerely hope that the convictions which result from
your reflections evolve into dynamic actions to
change and to update mathematics instruction in
order that the children we are now teaching will
be more adequately prepared to function effec-
tively in the 21st century.

Philosophy of Education
And the Mathematics Curriculum

Marlow Ediger
Northeast State University

Diverse schools of thought in the philosophy of
education have much to offer in terms of objec-
tives, learning activities, and appraisal techniques
for pupils in ongoing units of study in the cur-
riculum area of mathematics. Teachers and super-
visors need to study, analyze, and implement se-
lected strands from diverse philosophical schools
of thought.

Experimentalism and the Curriculum

A teacher emphasizing experimentalism as a
philosophy of teaching and learning may well em-
phasize generalizations such as the following:

1. pupils are to solve realistic problems. These
problems identified by learners need to be life-like
and emphasize what is relevant in society.

9. interesting experiences are important for
pupils which then sustain effort in learning.

3. subject matter is learned to solve problems
and is not an end in itself.

4, solutions related to problems are tentative
and subject to change.

Experimentalism, as a philosophy of education,
would definilely nol recouunend the [ollowing:

1. pupils being required to work content on
each page sequentially in a reputable series or
multiple series of mathematics textbooks.

2. learners working on basic operations and
story problems within the framework of a repu-
table mathematics workbook. These situations do
not provide opportunities for pupils to identify and
attempt to solve relevant problems.

3. the teacher determining objectives, learning
activities, and appraisal techniques for pupils.

Experimentalism then emphasizes that problem
solving be the heart of the curriculum. Real prob-
lematic situations existing in society are impor-
tant. Learners should have ample opportunities to
work within the committee framework on interest-
ing activities and experiences. Active involvement
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in learning is to be wholeheartedly stressed in on-
going units of study. The consequences of each
deed or act is important to consider.

Existentialism and the Curriculum

Existentialists emphasize the following generali-
zations in the curriculum:

1. pupils individually actively making choices in
terms of what to learn and the means of learning.

2. individual choices are to be stressed as being
important rather than group or committee deci-
sions.

3. individuals lose their humanness if choices
are not made on a personal basis.

4. alienation is possible, of course, when choices
are made.

5. situations in life may appear to be ridiculous
or absurd.

6. creative, products, acts and deeds of indi-
viduals are important! Conformity behavior is
definitely not an end goal.

Existentialists would not emphasize the follow-
ing:

1. the teacher selecting what pupils are to learn
(ends), the activities to achieve these ends, and
means of appraising learner achievement.

2. pupils completing sequentially pages of con-
tent from a mathematics textbook or workbook.

3. pupils exhibiting conformity behavior in
terms of learnings gained.

Realism and the Curriculum

Realists emphasize precise, exact learnings which
learners may acquire. Many realists stress the cur-
riculum areas of science and mathematics as be-
ing more important generally for pupils as com-
pared to other curriculum areas. Thus, the real
environment can be known as it truly exists. Math-
ematical concepts and generalizations may be uti-
lized to express precise content pertaining to
reality.

A second set of realists may emphasize the im-
portance of using precise, measurable objectives
in the curriculum. These educators believe that
what exists can be identified in terms of hehavi-
orally stated objectives. Learning activities may
then be provided for pupils to attain these de-
sired ends. Ultimately, it can be measured if these
chosen objectives have been achieved by pupils.
Thus, all curriculum areas may he emphasized
adequately in terms of balance in the school-class
getting. Cognitive objectives (use of intellect) and
psychomotor objectives (use of neuro-muscular
skills) may receive primary emphasis in teaching-
learning situations. Affective or attitudinal ends
are more difficult, of course, to state in measur-
able terms as compared to either cognitive or psy-
chomotor goals.

Realists, then, may emphasize the following
generalizations:

1. pupils can know the real environment as it
truly exists.

2. learnings gained by pupils individually can




be measured in terms of gains made.

3. selected realists believe that science and
mathematics should be emphasized more than
other curriculum areas in the school-class setting.

4. values in life would reflect reality in the en-
vironment. Thus, pollution, for example, if its
many forms would hinder the beauty and good-
ness within nature. This would suggest that the
natural environment be protected and nurtured to
truly reflect positive affective ends in society.

Realists deemphasize the following:

1. ideas, concepts, and generalizations being
separated from what the human can truly know in
terms of nature and the natural environment.

2. cognitive, psychomotor, and affective goals
that cannot be identified with precision and in
measurable terms.

3. pupils being heavily involved in determining
what to learn (the objectives), the means of
learning (activities to attain desired ends), and
appraisal techniques. The teacher is in a much
better position to determine these three parts of
the curricuium.

4. many abstract learnings to the detriment of
concrete and semi-concrete experiences for the
pupils.

Idealism and the Curriculum

Idealists in teaching-learning situations would
tend to stress abstract concepts and generaliza-
tions as being highly significant in terms of pupil

attainment in ongoing units of study. The learner,
as well as all individuals, cannot know the real
world as it truly exists. However, pupils can ac-
quire ideas about that which is real, actual and
life-like.

Thus, pupils would be guided in achieving the
following, as advocated by idealists:

1. relevant abstract content, meaningfully pre-
sented.

2. universals in terms of broad emcompassing
ideas, presented as challenging ideas for learner
attainment.

3. deductive learnings being emphasized for
pupils in terms of methods of teaching utilized by
the instructor. Clear, meaningful presentations
given by the teacher then are important within
the framework of ongoing activities.

In Closing

Teachers and supervisors need to study, evalu-
ate, and ultimately implement relevant strands
from diverse schools of thought in the philosophy
of education. The philosophy or philosophies of
education adopted may well make for an improved
mathematics curriculum in the school-class set-
ting.
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Prescriptive Teaching in the
‘Remedial Mathematics Laboratory

Donald E. Brown

Alvin Community College, Alvin, Texas

Remedial arithmetic at Alvin Community Col-
lege is taught in a self-paced program conducted
in a laboratory setting. Initially, the program was
a paradox in that prescriptive study, one of the
strengths of a self-paced program, was not utilized.
Presently, however, a student is placed into the
remedial arithmetic program only after an analy-
sis of the California Achievement Test (CAT)
scores indicate a deficiency in arithmetic. The pro-
gram now being used is the McHale-Witzke Arith-
metic Module Series published by Addison-Wes-
ley. Each module contains a placement test that is
prescriptive in terms of the units in that module.
The following flow chart illustrates the procedure
used for each module. The student performs only
that work in which he is deficient.

As each unit is completed, a test is given over
that unit. The student must demonstrate a pro-
ficiency of at least 85% on the unit test before
being allowed to go on to the next required unit.
Once all modules are completed, the initial screen-

ing instrument, the CAT, is again administered to
the student.

There are two reasons for giving the CAT as
both a pre-test and a post-test, First, a perform-
ance change is documented by which program and
instructor accountability can be established. The
gecond reason is one which sometimes goes un-
noticed in programs that permit retesting for mas-
tery, as does the program at Alvin Community
College. When students are permitted to retest
several times over the same material, their scores
may reflect practice more than understanding.
Hence, if the program is effective, a comprehen-
sive post-score should exceed the initial minimum
entrance screening score. A pre-test score indica-
tive of a mathematical understanding less than the
tenth grade results in the student being required
to enroll in the remedial arithmetic program;
hence, a post-test score of tenth grade or greater
is required to complete the program. To date, no
student has scored less than the tenth grade level
on the post-test.
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The Metric System
- Versus-
The Teaching of Common Fractions

by Kathy B. Hamrick
Augusta College

According to the report by NACOME (1975),
“the elementary school curriculum will be recon-
structed to include much earlier introduction and
greater emphasis on decimal fractions, with cor-
responding delay and deemphasis of common frac-
tional notation and algorithms.” (p. 41) The rea-
sons for this predicted change in the school math-
ematics curriculum of the United States were the
impending adoption of the metric system and the
increasing availability and use of calculators.
However, a different picture of the future emerges
from a comparison of the treatment of decimal
fractions and common fractions in the elementary
curriculum of the United States with the {reat-
ment of the same topics in the elementary curric-
ulum of Germany, a country that has used the
metric system for over a century. The results of
this comparison provide some information con-
cerning the validity of the NACOME prediction
since the prediction is based in part on the effect
of the adoption and use of the metric system in
the United States.

In the Federal Republic of Germany, all stu-
dents attend primary school (Grundschule) for
grades 1, 2, 3, and 4. After grade 4, the students
are channeled into Hauptschule, Realschule, or
Gymnasium. The Gymnasium primarily prepares
students for college and entails nine years of
study. Students study at the Realschule for six
years then usually go to a professional school
- which is not on a university level. Students who
do not go to Gymnasium or Realschule remain in
elementary school, now called Hauptschule, for
five or six years. Most of these students enter a
trade or take up work in a factory.

The comparison between the decimal fraction
and common fraction aspects of the curricula of
the two countries was conducted by comparing
an elementary (grades 1-6) mathematics tfext
series from the United States with several similar
text series from Germany. The series chosen to be
representative of the United States curriculum
was the Silver Burdett Mathematics (1976). Sep-
arate German series were selected as representa-
tive of Grundschule, Hauptschule, Realschule, and
Gymnasium. The following German fext series
were identified by Dr. Hendrick Radatz of the
Bielefield University in Germany as commonly
used in each of the four schools:

Grundschule: (1) Mathematik in der

Grundschule 1

(2) Wir Lernen Mathematik
Iand IT

(3) Welt der Mathematik
14 '

Haupischule: (1) Die Welt der Zahl-Neu
Realschule: (1) Neue Mathematik
Gymnasium: (1Y Mathematik Heute I and IT

(2) Mathematik Bé

Books one through four of the Silver Burdett
text series were compared with the German texts
used in Grundschule. Books five and six of the
German text series used in Hauptschule, Real-
schule, and Gymmnasium. Comparisons were made
in each of the following topics:

(1) Convepls of common fractions and decimal

fractions

(2} Equivalent common fractions and decimal
fractions

{3) Conversions between common and decimal
fractions

(4) Operations of addition and subtraction of
common fractions and decimal fractions

(5) Operations of multiplication and division
of common fractions and decimal fractions

(8) Measurement with common fractional and
decimal fractional parts of units

(7) Story problems requiring the use of com-
mon fractions or decimal fractions

Summary — Grades One Through Four

The number of pages that contain work on com-
mon fractions and on decimal fractions are listed
in Table 1 for each text examined. A page was
counted if it contained at least one exercise or
example involving one of the above seven fopics.

There is an earlier introduction and greater
emphasis on common fractions in the Silver Bur-

Table 1

Text Number'of Pages
Germany Common Decimal
Fractione Fragtions
Mathematik in der Grundschule 2 0
Wir Lernen Mathematik Bock I Q 0
Welt der Mathematik Book I a Q
Die Welt der Zahl-Neu Bock I ] a
Neue Mathematik Book I Q )
Wir Lernen Mathematik Book II 0 ]
welt der Mathematik Book 2 2 0
Die Welt der Zahl-Neu Bock 2 0 Q
Neue Mathematik Book 2 0 0
Welt der Mathematik Book 3 3 10
Die Welt der Zahl-Neu Beok 3 a 10
Neue Mathematik Book 3 2 g
Welt der Mathematik Book 4 3 7
Die Welt der Zahl-Neu Book 4 5 12
Neue Mathematik Book 4 5 20
United States Common Decimal
Fractions Fractions
Silver Burdett Book 1 7 1]
Silver Burdett Book 2 £l - ']
Silver Burdett Book 3 z1 1

Silver Burdett Book 4 45 1o




dett texts than the German texts. In the Silver
Burdett text series, common fractions are intro-
duced in Book 1 and are increasingly developed
in Books 2, 3, and 4, and extended to the topics
of addition and subtraction of like fractions, re-
ducing fractions to lowest terms, and rewriting
unlike fractions as like fractions. In contrast, ex-
cept for a brief section defining the fraction “14”
as the opposite of “double”, concepts of common
fractions are not developed until Book 4 of the
German texts, Even then, the main sections on
commeon fractions consist of two or three pages
at the end of the text.

Neither the Silver Burdett text series nor the
German texts contain sections specifically related
to decimal fractions. However, the texts of both
countries contain examples and exercises requir-
ing the use of decimal fractions in the form of
money and metric units of measurement. The
German texts contain more of these examples
than the Silver Burdett texts. However, the dif-
ferences between the texts of the two countries
is not nearly so great in the treatment of decimal
fractions as in the treatment of common fractions,

The NACOME prediction of later introduction
and de-emphasis of common fractions appears
somewhat supported by the evidence from the
comparison of the texts of the two countries.
There is not much evidence to support the pre-
dicted earlier introduction and greater emphasis
on decimal fractions.

Summary — Grades Five and Six

The number of pages in each text and the per-
cent of the pages of each text directly related to
common fractions and decimal fractions are listed
in T'able 2. The Silver Burdett text contains much
greater emphasis than the German texts on com-
mon and decimal fractions in Book 5. The differ-
ences between texts in Book 6 are not as notice-
able.

Summary and Conclusions

The German texts definitely introduce common
fractions much later than the American text series.
In the Silver Burdett text series, common fractions
are introduced in Book 1 and are an integral part
of the scope and sequence of Book 2 through 6.
In contrast, although there is some mention of
common fractions in Books 1 through 5 of the
German series, except for the text Die Welt der
Zahl-Neu Book 5, the fractions are not an integral
part of the scope and sequence of the texts until
Book 6. The series Die Welt der Zahl-Neu con-
tains three pages on common fractions at the end
of the book. A comparison of Book 6 of each
series shows the German texts contain the same
emphasis, if not more than the Silver Burdett text,
on common fractions.

In the German text series, decimal fractions are
not formally introduced earlier than in the Amer-
ican text series. In both series, decimal fractions
are formally introduced in Books 5 and 6. In the

German series, however, there are exercises as
early as Book 3 that are concerned with decimal
forms of money and metric measurement. There
is not much difference between the texts of the
two countries in the emphasis or treatment of
decimal fractions in Book 6.

The results of the comparison of several Ger-
man text series with the Silver Burdett text series
indicates the following:

(1) There is evidence to support the prediction
of later introduction of common fractions,

(2) There is no evidence to support the predic-
tion of deemphasis of common fractions with cor-
responding emphasis of decimal fractions.

(3) There is no evidence to support the predic-
tion of an earlier introduction of decimal fractions.

Limitations

This investigation was only a comparison of text
series. Before the data listed in Tables I and II
was collected, the above conclusions had been
reached from the examinations of the texts. The
data did tend to support the conclusions.

The conclusions and the validity of the entire
investigation are dependent on the assumptions
that: .

(1) A country’s text series reflects what is be-
ing taught in it’s curriculum.

(2) The chosen texts for this investigation are
representative of the texts for the respective coun-
tries.

No studies were found pertaining to these as-
sumptions.

During the investigation, it was found that in
the German texts common fractions are treated
as operators similar to function machines. This
different concept of a common fractions could
have accounted for some of the differences be-
tween the texts of the two countries.
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