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/Oredic[enf 3 meddage

With the many adoptions of texts to be made
this year, along with the workshops, mathematics
tournaments, conventions, and the usual work
teachers encounter this year has all the appear-
ances of being a busy one for all of us. Most of us
accept these things as part of our profession and
accept them graciously. I hope all of us will take
an extra step toward professionalism and become
involved in mathematics education through the
local councils, our own organization, and NCTM.
This is not a request for you to renew your mem-
bership, although many of you need to do so, but
more importantly to become actively involved with
other mathematics teachers to promote mathe-
matics curriculum improvement, improve teacher
competencies, and arouse student interest through-
out the state.

I would like to pose a question—Is it possible

to have a competent teacher, using a relevant cur-
riculum, and meeting his or her class everyday
with viable enthusiasm for mathematics and have
no change in student interest and performance?
Surely, in such a setting as this, something must
happen in student learning.

With this message, and at the close of CAMT,
I yield the presidency to Shirley Cousins. It has
been an enjoyable, though sometimes frustrating,
two years. Much has been done toward improving
our status, yet there is much to be done. To those
of you who offered encouraging words and to those
of you who offered suggestions for improvement, I
express my deepest appreciation.

To my principal, supervisor, and superintend-
ent who granted me time to work and attend meet-
ings, I am alo deeply indebted.

But most of all, to each of you, I am appreci-
ative of the opportunity you have given me to
serve. I am certain you will find, with Shirley as
president, that even though we have had a good
past the best is yet to come.

BILL ASHWORTH

Functional Constructions
A Graphical Approach to the Study of Functions

By Madolyn J. Reed

Assistant Director of Mathematics
Houston Independent School District

Most researchers seem to agree that some stu-
dents have difficulty with purely abstract concepts.
As a result, a wealth of manipulative devices for
classroom use has been developed to provide con-
crete experiences for these students. This develop-
ment of materials for better communication has in
some cases left the mathematics teacher, well-
trained in the art of abstracting, at a disadvantage
in finding good mathematical concepts easily adapt-
able to presentations with manipulative objects. It
is as if one is given a telephone without being aware
of the use of the device for communicating with
someone specifically. One might very easily dis-
cover that several spins of the dial will cause a con-
nection to be made with someone, somewhere, but
how does one reach Aunt Bessie in Prairie View,
Texas? Surely there is more to be done with this
instrument than random dialing. So it is with the
straightedge and compass in mathematics.

The function concept is an important one,
worthy of several chapters’ consideration in most
senior high school mathematics texts and, in some
cases, worthy of consideration as a separate course.
While this “show me” type student might have dif-
ficulty with a completely abstract approach to the
study of functions, he might very well feel compe-
tent with a combination of abstract and concrete

considerations in the study of the topic.

. By the time a student enrolls in second year
algebra, he has had adequate exposure to both set
terminology and set notation. Customarily, a func-
tion is defined as a relation, i.e., a set of ordered
pairs, in which no two pairs have the same
first coordinate. Symbolically, if F is a function,
F = {(ab): a<D and b:R where D and R are
sets.b. Furthermore, if (a,b):F and (a,c)cF then
b=c

Regardless of the approach, the definition
almost always uses the word set or set notation.
Now then, a set is usually specified in one of three
ways, by rule, by roster or by graph. It is the lat-
ter method of specification that the writer has con-
centrated on in an effort to communicate to stu-
dents the concept in general and the other methods
of specification in particular. This is in keeping
with the recommendation that a “from concrete
to abstract” approach be taken. ‘

Presupposing a background in simple graph-
ing, the technique of plotting a peint in a conven-
tional rectangular coordinate system, the straight-
edge and compass technique for finding the sum
and difference to two directed line segments, we
begin by a consideration of the graphical definition
of a function by having the student plot points in
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an effort to determine what happens to the graph
of two ordered pairs with the same first coordinate.
In most cases the response will be immediately
obvious. The graphs of two ordered pairs with the
same first coordinate will lie on the same vertical
line. In less sophisticated language, “The two points
are one over the other.” At this point a reference
to the algebraic definition of a function should be
given and a discussion of what this means graphi-
cally follows. The transition should be smooth and
thoroughly understood. Given a simple relation and
a method of picturing the relation, the student can
decide if the relation is a function by locking at
the graph. The relation is a function if no vertical
line intersects the graph in more than one point.
Later in the course, a more sophisticated analysis
of whether or not a given relation is a function can
be considered.

It is customary to next consider the meaning
of domain and range of a function. The exercise
here involves plotting points and establishing the
relationship between the coordinates of the points
and the coordinates of the projections of the points
on each axis. It is important that the idea of the
coordinate of the point, which is the projection
of the graph of the ordered pair on the horizontal
axis, is the first coordinate of the ordered pair;
a similar projection onto the vertical axis will give
the second coordinate of the point., In addition,
certain line segments are important. to this devel-
opment. The directed distance from the vertical
axis to the point is also the first coordinate of the
point, while the directed distance from the hori-
zontal axis i the second coordinate. This second
segment is the one with which we will be greatly
concerned.

Exercises involving projections of figures on
each axis are advisable here so that these students
can intuitively see the relationship between a graph
and its projection as introductory to the definition
of domain and range of a function. Again it is time
now to read the algebraic definition of domain and
range to reconcile the definition with what is being
done. The domain of a relation, i.e., the set of all
first coordinates is the projection of the graph onto
the horizontal axis, and the range of the relation
i3 its projection onto the vertical axis.

These first two concepts, “Is it a function?”
and “What is the domain and range?’ are usually
as much as most students really understand in a
completely algebraic presentation. It is at this point
in the development then, that he needs something
to keep him interested without sacrificing the
understanding of what is being done.

Now we present the arithmetic of functions.
Of importance is the graphical representation of the
value of function f at x where x belongs to the do-
main of f. Recall that this means that for any x,
a point on the horizontal axis, f (x} is the second
coordinate of the point on the graph whose first
coordinate is x. This we have seen can be repre-
sented by a line segment. To construct f (x) we
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erect a perpendicular to the horizontal axis at the
point whose coordinate is x. The intersection of
this perpendicular and the graph of f (emphasize
that this intersection is a point) together with the
point on the horizontal axis whose coordinate is x
determines, i.e., singles out, a unique line segment.
The length of this segment is f (x).

Definition: If f is a function and g is a func-
tion then the function h, whose domain, D, is the
intersection of the domains f and g, and in which
h(x)isf (x) + g (x) for all x in D is the sum of
f and g. Symholically h = f + g. We resort to
graphs again to avoid mass confusion. To construct
the sum of ftwo functions, f and g, we select a point,
z, in the intersection of the domains of the two
functions. At the point z a perpendicular is con-
structed to the horizontal axzis. On this perpendicu-
lar segment having one of its end points at z and
equal in length to f (z) 4 g (z) is constructed.
Recall that we presupposed a knowledge of such
a construction at the beginning of the development.
The point which is the upper end point of the seg-
ment so constructed is a point in A. Furthermore
the length of the segment itself is 2 (x). The func-
tion g (x) = 2x — 2 can be drawn with the seg-

ments g (x), xe{—5, —4, —3, . . . 3, 4} repre-
sented. A second function f (x)}) = x* with the seg-
ments £ (x), xe{—3, —2,. .., 3} can be represented.

The sum of the two functions £ (x) + g (x) or
h (x) = x* 4+ 2x — 2 may be shown with the seg-
ments h (x), xe{—5, —4, —3 ... 2, 3} represented.

The problem of the difference of two functions
is a simple one once the class understands the
simple construction of finding the negative of a

. directed line segment. With this understanding and

& refresher comment about the definition of sub-
traction in the set of real numbers, i.e., {a -— b) is
[a 4+ (—Db)] the student should be encouraged to
develop the construction for f — g and g — .
Here is a magnificent opportunity to have the stu-
dent see another illustration in which subtraction
is-not a commutative operation.

Before we can construct the product of two
functions, we must look at the construction of the
product of two segments. This construction is usu-
ally not one which has been done by these stu-
dents. The construction presented to them requires
the establishment of a unit segment. This is not
difficult to do since constructions were done in a
coordinate system. The teacher should illustrate
the product construction of two segments ¢ and b,
with different possibilities for a and 4. The results
are interesting when one of the segments is 0 or
when one segment is 1. The construction, then, is
to locate the point whose coordinate is b on the
horizotnal axis. A discussion of the commutativity
of multiplication is in order here. At the point on
the horizontal axis whose coordinate is b — I,
construct a perpendicular of length a. The upper
end of this perpendicular and the point & determine
a line which intersects the vertical axis at a point
whose coordinate is the product of ¢ and b.




Once the nature of the construction is under-
stood, the application to constructing values in the
product of two functions naturally follows. In the
presentation of the product of two functions some
new considerations for discussion arise. Given an x
in the intersection of the domains of two functions
f and g, segments f (x) and g (x) are easily located
now. But a review of the product construction re-
quires that one of the factors f (x) or g (x), be
taken along the horizontal axis. Question! What
shall we do? The ensuing discussion takes patience
on the part of the teacher so that the class has
ample time to make a decision. Complete with-
drawal from the discussion by leaving the room
might be a good idea for it is important that the
class sees what must happen here. The idea is
necessary for the study of composition of functions
and the inverse of a function.

To continue, to construct the product of f (x)
and g (x) for any x, select one of the factors, say
f (x) as the factor to be constructed on the hori-
zontal axis. With the unit length determined by
the system as radius, use the compass to locate
'f (x) —1]. At the point [f (x) —1] construct a
perpendicular to the horizontal axis of length
g (x). Continuing the construction as indicated
previously the segment whose length is f (x) * g (x)
is now determined on the vertical axis. The student
should be aware that the construction is not com-
plete. The segment we just constructed is kb (x)
= f (x) *» g (x) and must be transferred to the lo-
cation x on the horizontal axis, i.e., on the line
perpendicular to the horizontal axis at x, h (x)
must be constructed. Illustrate the product of two
linear functions. Now the students can “see” the
quadratic function which is evolved as the product
of two linear functions,

The construction for the difference of two
functions was left to the student as a natural con-
sequence of the definition of subtraction and the
construction for finding additive inverses. Simi-
larly the construction for the quotient of two fune-
tions f and g with g not constantly zero can be left
to the student as an equally natural consequence
of the definition of division (a/b = a » 1/b) and
the following construction for finding reciprocals.

The construction for finding reciprocals is not
difficult but requires knowledge of the construc-
tion of a parallel through a given point. A review
of this construction may be necessary. Illustrate
the reciprocal construction with a >0. On the hori-
zontal axis, locate the point whose coordinate is a.
The line through this point and the point on the
vertical axis whose coordinate is 1 is drawn. Now
through the point whose coordinate is 1 on the
horizontal axis construct a line parallel to the first
line. This line intersects the vertical axis in a point
whose coordinate is the reciprocal of a. Illustrate
the same construction with a < .0.

An interesting question may be posed is what
happens in the construction if a = 0? The dis-

cussion of this is good reinforcement of the fact
that zero has no reciprocal and hence division by
0 is not possible.

By now the student hag had ample experience
with constructions and will not be hesitant to dis-
cuss the composition of two functions f and g. Tak-
ing a look at the definition, the composition of
two functions f and g, symbolically f 0 g, is defined
to be f [g (x)] where g (x) is in the domain of f.
Suggest this construction and show the result of
constructing f[g (x)] where f (x}) = x and g ()
= Lx 4 1. The construction this time utilizes
the properties of the line with equation y == x.
(Note: This line could have been utilized in the
product construction since any projection onto this
line makes it possible to locate a point on either
axig having the same coordinate as a point on the
other axis.) Locate x, on the horizontal axis, de-
termine g (x). Project the upper endpoint of g (x),
horizontally onto the line vy —= x. What is the re-
sult of this projection? From this point on y = x
project vertically onto f. The distance from this
point on f to the horizontal axis is f[g (x)]. It only
remains to project horizontally again onto the line
through x perpendicular to the horizontal axis to
complete construction. :

The final consideration now is to the concept
of the inverse of a function. Definition: ' = (a,b)
if and only if f = (b,a). We need to establish a
relationship between the point in the plane whose
coordinate is (a,b) and the point in the plane
whose coordinate (b,a). To encourage this discov-
ery by the class, have the class plot pairs of points
whose coordinates are related by this property. All
line segments whose lengths can be determined as
a result of plotting pairs of points (a,b) and (b,a)
should be drawn in. Show the result of this exer-
cise for selected pairs.

A discussion of symmetry is needed here.
Draw in the line whose question is y — x. Ilus-
trate that the point whose coordinate is (a,b) and
the point whose coordinate is (b,a) are the ends
of a segment whose perpendicular bisector is the
line whose equation is y = x. This is precisely
what we mean when we say the points are sym-
metric to each other with respect to the line whose
equation iz y = x. If the revolving of the graph
about the line whose eguation is vy — x is not
readily suggested, it might be prompted by hav-
ing the student complete one construction with the
graph of f one color and the graph of f* another.
Then have him revolve his paper 180° about the
line whose equation is y = x and view the graph
from the back side of his paper. Then have him
complete the same exercise. with the graph of f
only and compare the view from the back side of
his paper with the graph he constructed of f*. Is
f 1—1? It is if £ is a function. The student should
be able to describe a test to determine the answer
by looking at the graph.

The set of all functions with the algebra de-
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fined as it is in this paper makes an interesting
study of a system in which the following questions
can be asked: Are the operations commutative?
Is this set a field? Are the operations associative?
Distributive? These questions can be answered
with a graphical presentation. It is not intended

that these concepts be presented in isolation but
should be accompanied by an algebraic presenta-
tion using the algebra as a language to describe
the results of the experiments. There are numerous
opportunities for tangent chasing into other alge-
braic concepts via constructions from geometry.

Are We Shortchanging Our Students?

Back to Basics? New Basics? or Old Basics?

By Frank Ebos

Faculty of Education,
University of Toronto.

Probably each of us in our role as a teacher
has been confronted by an anxious student inquir-
ing about some of the math we teach. How many
times have each of us heard:

Why are we taking this stuff?
What’s it good for. . . . sir?

I would be the first to admit that we can’t
justify everything we do all the time. To explain
how a specific topic in mathematics “fits” into the
scheme of things is often difficult. The student
must trust that what we are doing day by day in
the math classroom is useful, is relevant, and is
needed for today’s activities as well as for tomor-
row’s, Unfortunately, for many students tomorrow
never comes. The students then become parents,
and the cycle of asking “Why are we taking this
stuff” is continued.

There are certainly many indications that
there is concern about the curricula we teach. Many
studies have been, and are being completed, in both
the United States and Canada to ascertain “What
should be the math curricula?”’ Unfortunately, to
predict the content, the gkills, or even the methods
needed at some future date is difficult. If you
listen to the experts and read the journals, you
soon would develop a complex about what we are
not doing in the math classroom, but thank good-
ness for the so-called new math. We have in it at
least a scape-goat. We have seen the headlines
“New Math has failed! Back to basics!”, and now
we have a replacement for the new math, the BTB
(Back To Basics). When the “New Math” was in
Vogue, each person you talked to had a different
“understanding” of what the “New Math” was:
There was the Set-New-Math followers; the Base-
New-Math followers; the Structure-New-Math fol-
lowers, etc. (I apologize to those new-math groups
not identitied at this time). The parents identified
new math from another point of view. They only
saw what their children brought home; sets, and
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new words: commutative, associative, distributive,
inverse, base 2, base 8, third base — to name a
few — and soon the scene is set for the BTB to
be formed, and the parents are willing to join.

These days, I am hearing more and more of
the BTB, but I think that before we change we
need to decide “what agre the basics”. Parents
whose experience with math was almost completely
computation, evaluate a new program or curricu-
lum according to their backgrounds. We must ask:
are the basics solely related to computation? I
think not. No one would disagree that “the old
basics” are essential, but there are ‘mew basics”
that parents as adults use in their every day living,
and which need to be dealt with. The computation
content, so familiar to many and part of the
“Happy Days Syndrome” to return to basics is
not, by itself, suitable even for today’s world, let
alone tomorrow’s.

My main concern is not that the BTB wants
change (improvement, or whatever) but that they
appear to want the pendulum to swing back to a
“shut-up: do-this” curriculum, based on compu-
tation'. We can’t afford to have the pendulum
swing back too far. Everyone will basically agree
that computational skills are important and basic
to the students mathematical development, but to
stop there would short-change our students. Before
the BTB make the same errors as the New Math
groups, they (there are probably more than one)
should decide what the basics are!

I want to help the BTB by offering the follow-
ing suggestions. {These suggestions could be added
to the computational platform already advocated
by the BTB.) A little review is useful here:

BTB — a group of persons who want to return
Back-To-Basics)

1. Students want us to be accountable. We
should have some reasonable explanation or
justification for “Why are we taking this
stuff?” If we were to provide examples of ap-




plications for the present curriculum, some
students and parents would be partially satis-
fied. To tell a student he is taking a topic
because he needs it for next year’s math is a
weak argument. Many topics have applications
not only to satisfy the present questions asked
by students but also to provide a foundation
for their future study of the topic in next year’s
math class. Applications should be basic to
any curriculum.

In our everyday living, we are mever given
“neat problems” solved in a ‘‘neat way” that
result in a “neat solution”. A real-life prob-
lem requires us to sort out the useful (needed)
information from the extraneocus information.
Do we ever give students problems that con-
tain more information than is really required
to solve the problem? Will our students ever
be given a problem to solve when they enter
the “world of work” for which the “boss” pro-
vides only the information that is necessary?
I doubt it! You doubt it! Yet how much of
this practice in solving do we provide our stu-
dents in our math classrooms (if you do pro-
vide these types of problems, then consider
this section a brief review). To decide on what
information is necessary or needed to solve g
problem, to me, is a basic skill. How many
times have you given a problem which has a
missing piece of information that the student
is to provide in order to solve the problem?
(Try assigning 5 problems, each having an
essential piece of information missing. Provide
a second sheet that contains the 5 missing
“pieces”, as well as 25 other pieces of extrane-
ous but closely related information). This skill
will probably be used more often than the
skills advocated by the BTB. Without this
gkill the BTB skills are often confusingly ap-
plied by students to solve problems.

However, “let me make it perfectly clear” that
we need the BTB basic skills once the infor-
mation is properly interpreted and the essen-
tial computational operations decided upon.
Unfortunately, “good 0ld” Euclidean geometry
provided an opportunity for a student to “sort
out” the needed information, but an EGID
movement (Euclidean Geometry Is Dying)
seems to have sprung up (E GAD!)

. Every day, as adults, we read the Gallup Poll,
the latest statistics on “why we are paid more
and more but are eating less and less” and,
this poll and that poll. However, do we pro-
vide any basics for students to tackle the
world of statistics? We give a brief look at the
topic in the seventh and eighth grade (if at
all in some classrooms) and then almost com-
pletely ignore it in the ninth and tenth grade,
but give some hope to those who stay on and
finish high school (the key question here is—
how many will finish high school?) Could

these students not find the skill of working
with statistics useful just for everyday living
and thus be given the opportunity to study
the topic in the ninth grade. Working with,
interpreting, and reading statistics is o basic

skill,

Statistics permeate too much of our everyday
living to be ignored as it has been in our
mathematics curriculum. We are short chang-
ing our students by not teaching this skill.

. How many students have asked you “Is this

right?’. How many are completely lost if they
cannot find the answer at the back of the
book? Students should be taught (and taught
and taught . . . .) to know how to check that
their answers are reasonable. T'o know the an-
swer is reasonable is a basic skill. A student
must by the twelfth grade “feel” whether the -
answer is reasonable. The “boss” does not
assign problems with the answer at the back
of the book. Teaching this skill partially can
be accomplished by providing students with
skills of approximating, estimating, as well as
decision making. Too often students are given
problems that have ‘“neat” answers. The fol-
lowing problem about a corn roast seems tri-
vial at first but when it was assigned to eighth
grade students it introduced the need to make
decisions.

“How much would it cost our class to
20 on a corn roast?”’

The students list the assumptions, and make
decisions to arrive at the cost of going on the
corn roast. 1 have assigned this problem to
teacher groups and have had to referee argu-
ments, as well as to impose a maximum time
limit of fifteen minutes because the problem,

"although simple in appearance, can be com-

plex in finding a “reasonable” solution. The
solution will eventually involve answers fo
these questions:

Where are we going? How do we get there?
Do we take drinks? Do we need salt, butter,
napkins, pepper, etc. etc.? These are but a
few of the problems hidden in arriving at a
“reasonable” price for a “reasonable” corn
roast. What’s your answer?

Problems suitable for different grade levels
should be assigned to develop and strengthen
thig hasie skill “Is my answer reasonable?”

1 am sure many teachers already provide stu-
dents with a variety of strategies for “start-
ing” to solve a problem. I will never forget
when I posed a problem to a class and got the
immediate reply, “We haven’t taken that yet
.. ..sir!” We all remember too well the com-
plete blanks left for some problems tackled by
students writing exams. Some students freeze
as soon as we say “word problem”, and will
sit and look but really do nothing to “start”
the problem.



Teaching students to “sketch” the problem or
make o diagram to help them solve the prob-
lem is a basic skill that needs to be emphasized
continually. Many problems have been solved
by “doodlers”, Often a problem is solving the
“doing” something rather than “waiting” for
an inspiration. A blank page provides very lit-
tle inspiration (but there are exceptions, of
course).

My list of recommendations to the BTB is not
exhaustive or complete. Each of us have probably
many other recommendations to add, but we do
have to make recommendations.

There is much going on in curriculum devel-
opment as well as studying how students learn.
The process is painstakingly slow. Studies are be-
ing conducted on developing the problem-solving
abilities of our students, as well as on many other
aspects of teaching and learning.

Curriculum development is progressing, but to
a new teacher the educational scene must appear
confusing, I once heard a description of curriculum
development that seems to describe the present
scene. The scene opens in the cockpit of a 747
(big bird). One pilot remarks to the other “We
seem to be in a fog”. The other pilot remarked,

1. A description of the “shut-up: de this” curriculum was in a speech
delivered by Eric MacPherson of the Faculty of Edueation, Univer-
sity of Manitoba at the Annual Meeting of the National Council
of Teachers of Mathematics in Denver, Colorado, April, 1975.

“Yes, but we are making headway.” The daily evi-
dence, as valid or invalid as we wish to make it,
seems to indicate that there are some shortcomings
in our curriculum, and different pressure groups
are making it known that our present curriculum is
not making headway. Students do not want to be
short-changed, nor do we want to short-change
them. They want to be able to understand “why
we are taking this stuff’; and perhaps their re-
occurring question might indicate a weakness in
our curriculum. We are so over-preparing for the
future that we are neglecting the present. We do
have to have informed consumers. We want them
to use math in their everyday living (accurately
too!) We do want our students to be mathemati-
cally-literate when they read the newspaper, pay
that charge account or calculate the percentage
increase of their raise.

At the same fime, we do not want to short-
change the students by providing them with a cur-
riculum that accommodates. the present but ig-
nores the future. They must have some “computer
sense”, some appreciation and working knowledge
of calculators, as well as an appreciation of mathe-
matics, “as a science”. At the same time, we need
to prepare them to be mathematically sound, and
for this we would need to provide a useful mathe-
matical foundation.

To keep everybody happy is impossible, but
we all have to participate in lifting the fog.

Fifty Practical Activities in Geometry
and Measurement

By James R. Smart
San Jose State University, California

Now that many teachers are beginning to
want laboratory-type activities or projects for use
in their mathematics classes, the available supply
of practical and interesting suggestions has proved
much shorter than expected. The following list of
projects in geometry and measurement hopefully
includes some that are new and worthwhile for you
to try. To make the list of more value, four pos-
sible symbols have been added after each activity.
Those marked with a C can be used as applica-
tions of a hand-held calculator. Those marked with
an O are suggestions for activities outside the ordi-
nary classroom, Those marked with an S probably
require some high school mathematics. Projects
marked with an M use metric units.

Activities Involving Sets of Points:

1. Play a treasure hunt game. Example: The
treasure is buried at one of the labeled points in
Figure 1. Use these three clues to locate it.
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Figure 1




£&—» &
a. Not on DH., b. On I side of AL, c. Not on

—
GN.

2 Make up a treasure hunt game and let a
friend find the treasure.

3. Find the pattern for the total number of
squares of all sizes in arrays of squares such as
those in Figure 2, without counting each square.

(C)

Figure 2

4. Find a formula for the total number of di-
agonals in a polygon with any given number of

sides. (C,S)

Activities Involving Length

5. In a sheet of paper, cut a hole big enough
to walk through. One pattern is given in Figure 3.

Figure 3

6. Use a state map. Make a marker for the
scale in kilometers and practice finding distances
between cities. (M)

7. Practice estimating heights of objects by
comparison of shadows. For example, if the shadow
is 3m long for an object known to be 2m tall, then
an object with a shadow 6m long will be 4m tall.
(C,0,M)

8. Use a method of indirect measurement with

Figure 4

a ruler to estimate heights. As shown in the ex
ample in Figure 4, sight along a centimeter ruler,
then use similar triangles and the proportion
x/4 = 15/30, so that x = 2(m). (C,0,M)

9. To help estimate with centimeters, con-
struct a set of length standards from cardboard in
multiples of 4 centimeters. Then use these stand-
ards to practice estimating, (M)

10. Choose an appropriate scale and make
scaled drawings in metric units for a room and a
table. (C,M)

11. Practice using a micrometer to measure
shorter distances such as the thickness of a sheet
of paper. (M)

12. Review non-standardized body units of
length such as the cubit, span, palm and hand, and
use these units to estimate lengths of objects.

13. Using a local map, list some of the features
located within a radius of one kilometer from this
classroom. (O,M)

14. Construct a small trundle wheel out of
cardboard and a fastener, as shown in Figure 5, to
measure in centimeters. (M)

Figure 5

15. Using an almanac or other reference book,
find the lengths in meters of various Olympic
events in track and field and in swimming. (O,M)

168. Cut out three non-standard units of arbi-
trary length from a sheet of paper and practice
measuring lengths with these new units.

17. Investigate the metric sizing for articles
of clothing. (O,M)

18. Estimate in millimeters, using tools such
as wrenches and sockets to check. (O,M)

19. TFind the length of your average step in
centimeters. (O,M)}

Activities Involving Area

20. Make sets of standard square units out of
cardboard, 4 square cm, 9 square c¢m, 16 square
cm, and so on, to use in learning to estimate area
in square centimeters. (M)

21. On a sheet of acetate, make a grid tem-
plate in square centimeters that can be used to
measure the area of rectangular regions. (M)

22. Tind the areas of various irregularly-
shaped regions by using a grid network marked in
centimeters. (M)

23. Use a planimeter to find the area of re-
gions. A planimeter can be secured from an engi-
neering or drafting department.



24. Lay off one acre by having four people
stand at the corners. (0)

25. Lay off one hectare by having four people
stand at the corners. (O,M)

26. Use the trapezoidal method for approxi-
mating irregular areas of lawn. This method is ex-
plained in calculus texts, but uses no calculus at all
(C,0,5M)

27. Use Heron’s formula,

A = /s(s-a) (s-b) (s-c)
to find the area of a large triangular region. In the
formula, s is half the perimeter and a,b,c are lengths
of sides. (C,0,5,M)

28. Practice finding the approximate area of
rectangular regions using non-square units such as
those shown in Figure 6.

Figure 6

29, Draw three squares of arbitrary size, cut
out the regions, then use these non-standard units
to measure area.

Activities Involving Angles

30. Experiment with various ways of estab-
lishing a right angle without using a protractor.

31. Construet a non-circular protractor such
as the one shown in Figure 7 and practice using it.

Figure 7

32. Construct a gravity protractor such as the
one shown in Figure 8 and practice using it to find
angles of elevation.

Figure 8
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33. Construct a protractor for measuring in
radians. (S,M)

34. Use a method of indirect measurement in-
volving the tangent of an angle to measure height,
as illustrated in Figure 9. (C,0,5,M)

Figure 9

35. Use the method of indirect measurement
of heights shown in Figure 10. First measure the
angle of elevation, then move up a known distance

Figure 10

and measure the angle of elevation again. Con-
struct a scaled drawing and find the unknown
height from the drawing. (O,M)

_Activities Involving Volume

36. Find the volume of your classroom in cubic
meters. (C,M)

37. Find a reasonable value for k in the for-
mula § = kn giving the number of desirable cubic
meters of space per student in an elementary class-
room. In the formula, n is the number of students.
(C,5.M,)

38. Construct standard units from cardboard
for the cubic centimeter and the cubic decimeter.
Practice estimating volume of various objects using
these standards. (M)

39. Estimate the cost per cubic meter of liv-
ing space for constructing a home at today’s prices.
(C,0,M)

40. Use a standard liter container that is
marked in milliliters. Pour some water into a tin
can and try to guess how many milliliters you have
poured. Check by pouring it into the standard con-
tainer. (0O,M)

41. If the gas stations in your area decided
to sell gasoline by the liter, what would be the
price per liter of regular gasoline? (C,0,M)
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42. Find the volume of water in an aquarium
in metric units. (C,0,M)

43. Find the volume of water in a swimming
pool in metric units. (C,0,M)

Miscellaneous Activities

44, Measure the average speed of an automo-
bile traveling down a street by timing it for a short
known distance with a stop watch. (C,0)

45, Measure the average landing speed of an
airplane by timing it for a short distance with a
stopwatch as it approaches an airport. (C,0)

46. How hot is it outside now, in Celsius de-
grees? (0O,M)

47. Construct a Celsius thermometer by modi-
fying a Fahrenheit thermometer, using the easy
conversion pattern in Figure 11. (M)

48. Take a cake recipe from a cookbook and
change it entirely into metric units. (C,0,M)

49. Check the labels of various food products
in a kitchen to see which are measured by mass

and which by volume, If the item does not have
the metric units, convert approximately. (C,0,M)

50. Play a challenge-type game in teams of
two, seeing which team can get the closest esti-
mate, following instructions such as, “Stand so
that you are 20 meters apart.” (O,M)

Figure 11
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Probability — Magic or Mathematics?

By John A. Williamson

Department of Mathematics
University of Colorado
Boulder, Colorado 80309

The concept of a finite probability model is
well-defined, well-developed and well-understood.
High school Algebra 2 textbooks make it very
clear that a finite probability model consists of a
list or set of possible outcomes of an experiment
together with a set of probabilities, one of which
is assigned to each of the outcomes in the list.
The set of possible outcomes is called the sample
space or event set while the elements of the event
set are called simple events or elementary events.
The probabilities assigned to the simple events
must be greater than or equal to zero and less
than or equal to one and the sum of the prohahili-
ties over all of the simple events must equal 1. An
event is a subset of the event set. The probability
of an event A is the sum of the probabilities of
the simple events in A. If A and B are events,
then the events, either A or B, is the event
A 0 B . While the event, A and B, is the event
A 0 B . Tt has been my experience that students
can without too much difficulty grasp these ideas.
The difficulty for the student often begins when
he or she is asked to decide on what probabilities
should be assigned to the simple events in the
model. In their counting of possible outcomes
students are sometimes confused by whether order
matters or by whether ohjects are distinguishable
or indistinguishable. Confusion can also arise over

the notion of independence and when probabilities
should and should not be multiplied. It is my
opinion that a good many texthooks do not provide
the student with an adequate explanation concern-
ing why one assignment of probabilities is preferred
over another. This note is an attempt to supply
that explanation.

1. Coin Tossing

Two coins are tossed and the number of
heads that appear is recorded. If you, the teacher,
ask your students to construct the probability
model for this experiment, the answer you expect
to receive is model 1.2. However, you can usually
count of having one student ask, “If the coins are
indistinguishable, why isn’t model I-1 the correct
answer?”’ The numbers 0,1,2 which constitute the
even set here refer to the number of heads.

Model I.1
Event Set 0 1 2
Probability 1/3 1/3 1/3
Modetl 1.2
Event Set 0 1 2
Probability 1/4 1/2 1/4

You can often convince the student of the er-
ror of his or her ways by asking what would be their
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answer if a nickel and a penny were tossed rather
than two indistinguishable coins. However, this is
only partly satisfactory. Model 1.2 is the correct
answer because the probabilities given in that
model will be seen to be approximated by the long
run frequencies of the three elementary results,
no heads, one head, two heads if the experiment
of tossing two coins is repeated on a large number
of times. This can be demonstrated in the class-
room by computing the frequencies that result
when your students toss a pair of coins many,
many times. However, a word of warning is in
order. Unless you are prepared to have your
students toss coins all period, you may be in for
some embarrassment. During a talk which was
based on this paper given at the El Paso Regional
Meeting of the National Council of Teachers of
Mathematics, my audience supplied me with a
single head frequency half-way between one-half
and one-third. Obviously in this case, 84 tosses of
a pair of coins was not a large enough number of
tosses.

The real world phenomenon of long run stability
of frequencies ig basic to the building of probability
models. It must be emphasized, however, that the
gtability property of frequencies is not a conse-
quence of logical deduction. In the words of J. L.
Hodges and E. L. Lehmann [2], “it is quite pos-
sible to conceive of a world in which frequencies
would not stabilize as the number of repetitions
of the experiment becomes large. That frequencies
actually do possess this property is an empirical or
cbservational fact based on literally millions of
observations, This fact is the experimental basis
for the concept of probability.”

ll. Tossing Two Marbles Into Four Urns

Our main point can also be made by con-
sidering the experiment of tossing two marbles
into four urns. This experiraent might be described
by any one of the following four models

Here the two digits in each of the numbers in
the event sets correspond to the urns that are
occupied. The elementary event 13 corresponds to
the result that urn 41 and urn #3 each contain
a marble while the elementary event 22 corresponds
to the result that both marbles find their way into
urn #2. 1f one of the marbles used is green and
the other yellow, then students can usually be
expected to answer that model I1.1 gives an assign-
ment of probabilities that is appropriate for this
experiment. However, if the students initially are
told that the experiment is being performed with
two red marbles, then some uncertainty may find
its way into the minds of your students. If the
experiment is to be performed with thimble sized
urns that contain room for only one marble, then
either model 11.3 or model II.4 is appropriate, how-
ever you might expect to get some student dis-
agreement over which of these two models should
be used. A moments reflection, though, should
make it clear to your students that the last two
models are equivalent. To the result that both urns
#1 and #2 are occupied both models assigned
probability 1/6. If the marbles are indistinguish-
able then we use IL3 with the simple event 12
corresponding to this outcome. If the two marbles
are distinguishable then we can use IL.4 with the
two-element event consisting of the simple events
12 and 21 corresponding to this result. However,
confusion concerning II.1 and I1.2 is not quite so
easy to dispel. When a double occupancy is pos-
sible, the fact that the probabhility of the event that
urns #3 and #4 are occupied is correctly given by
model II.1 as 1/16 4 1/16 =— 1/8 and not by
model J1.2 as 1/10, whether the marbles are dis-
tinguishable or not, can be definitely established
only after an examination of the {frequencies
associated with a large number of performances of
the experiment. However, an approach similiar to
the penny-nickel argument of the previous example
can usually convince the unsure, thus removing the
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need for many, many repetitions of the experiment.
Doubts, though, still may linger. If the marbles
are indistinguishable then the event set for the
experiment will have to be the event set of IL.2.
“What then?” your students might ask. In this
situation we use the event set of II.2, but we do
not assign equal probabilities to each of the simple
events. Instead, we base our assignment of prob-
abilities on model I1.1, so that the simple events
11, 22, 33 and 44 are each assigned probability 1/16
while the remaining six simple events are each
assigned probability 1/16 + 1/16 = 1/8. A blind-
folded experimenter will expect to find ums #3
and #4 occupied approximately 1/8 of the time
whether the marbles are distinguishable or not.
Both the coin tossing and marble tossing examples
illustrate the general principal that in the macro
world of our experiences objects behave as if they
are distinguishable even though they may not ap-
pear to be so. When probability assignments are
based on considerations of symmetry, this general
principal should always be kept in mind.

With very much larger numbers, the previous
models are used in physics. Urns become physical
states and marbles become particles. Particles
whose behavior can be described by models 1.1,
I1.2, and IL3 are said to possess, respectively,
Maxwell, Boltzmann statistics, Bose-Einstein sta-
tistics, and Fermi-Dirac statistics. Experimentation
has revealed the surprising fact that in the micro
world of particle physics there are particles that
behave as if they are indistingnishable, that is,
there are particles possessing Bose-Einstein statis-
tics. Perhaps an even more surprising fact is that
no known particles possess Maxwell-Bolizmann
statistics. An assignment of probabilities like that
in II.1 which some have argued in the past is in-
herent to the notion of randomness has been shown
through experimentation not to be relevant to the
study of the random behavior of physical particles.
The fact that for appropriately defined physical
states, no two electrons, neutrons or protons can
occupy the same state and hence that these par-
ticles possess Fermi-Dirac statistics does not con-
tradict our intuitive notion of randommess. How-
ever the fact that there are physical forces at work
causing protons, nuclei and atoms containing an
even number of elementary particles to behave as
if they were indistinguishable, that is to possess
Bose-Einstein statistics, does make us possibly
want to look again at our concept of randomness.
To what extent the physics of Bose-Einstein sta-
tistics is well understood we will leave to the physi-
cists to debate. Our purpese in discussing the be-
havior of certain physical particles is only to make
again the point that a “correct” assignment of
probabilities in a probability model is that assign-
ment that best reflects reality in the sense that the
probabilities are well approximated by the rele-
vant real-world long run frequencies. W. Feller [1]
makes the statement “no pure reasoning could tell
that photons and protons would not obey the same
probability laws.” With reference to Bose-Einstein

and Fermi-Dirac, Feller goes on to say “the justi-
fication of either model depends on its success”
and that this discussion “provides an instructive

_ example of the impossibility of selecting or justify-

ing probability models by a priori arguments.”

The counting formulas used to compute the
probabilities in II.1, I1.3, and I1.4 are, of course,
a part of the material covered in most algebra 2
units on probability. If there are no n urns and
r distinguishable marbles and if multiple occu-
pancy is permtited, then there will be n* possible
distinguishable outcomes of the experiment of toss-
ing the marbles into the urns. If no more than one
marble can occupy an urn, then the appropriate

counting formulas are, for I1.3 Tn , and, for I1.4,

n!/(n—r)!. In each of these three cases the desir-
ing probabilities are simply the reciprocals of the
relevant counting formulas. The formula needed
in I1.2 is that which gives the number of dis-
tinguishable arrangements of r indistinguishable
marbles in n distinguishable urns, or, equivalently,
that which gives the number of distinguishable
non-negative integer solutions to the equation
r, + 1 -+ 4 r, = r To see that this is the
case think of r;, as the number of marbles in the
i urn. The total number of marbles is then
I, + T, 4 r,=rInll2,r=2and n = 4.
The solutionr, = r, = 1, r, = r , =0 corresponds
to the occupancy of urns #2 and #3 and hence
to 28 in the event set while the solution r, = 2,
¥, = r, = r, = 0 corresponds to the double occu-
pancy of urn #1 and hence to 11 in the event set.
Enumeration will show that there are 10 distinct
non-negative integer solutions to the equation
r, + r, + r, -+ r, = 2. Discovering the required
counting formula can stand as a challenge to your
better students. The fact that this formula is
given by

# is not immediately obvious although

the clever stars and bars proof of this result found
on page 38 of reference 1 does provide the reader
with some insight. An algebra 2 student who under-
stands the binomial coefficient counting formula
will be able to follow the Feller derivation of the

L‘i‘._i_f_L formula.

lll. Independent and Sex Ratios

If A and B are two events and if the real-world
outcomes corresponding to A and B are believed
not to influence one another, then A and B are
said to be independent and the assignment of
probabilities within the model is made in such a
way that P(A @ B) = P(A)}P(B). The fact that
it is the long-run behavior of frequencies that leads
us to associate real-world unrelatedness and the
multiplication of probabilities is a point that again
I feel is not always clearly made in algebra 2 text-
books. Before presenting examples designed to
clarify this peoint, it is necessary to construct a
probability model with simple events that corre-
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spond to the sex of a newborn child. Then if we
labe! these simple events M for male and F for
ferale, it is tempting, due to our understanding
of how sex is determined, to assign equal proba-
bilities of 1/2 to each of the simple events M and
F. However, once more there are forces at work
which cause frequencies to differ from the proba-
bilities deductively obtained from symmetry con-
siderations. Data on the sex of mewborn children
suggest that the assignment of probabilities in
model III.1 is closer to the mark than is the as-
gignment 1/2, 1/2.
Model IIT.1

Event Set F M
Probability A8b 5156
Model TIL.2
Event Set
MM MFE FM FF
Probability
(.515)* (.515)(.485) {.485)(.515) (.485)*
Table |
1st
2nd M F Total
M 526 498 1024
F b06 470 976
Total 1032 968 2000

Next, let us imagine that we are interested in

the sex of the first two children born in your
county in the new year. If we decide to ignore
multiple births, then our intuitive feeling is that
the sex of the firstborn can in no way affect the
sex of the second born. If the data in Table I were
a record of the sex of the first and second hirths
in 2000 counties across the country for this year,
then if our intuition is correct we would expect to
find that the ratio 526,/1032 is approximately equal
to the ratio 1024/2000, that is we would expect
to find that among those counties that recorded
a male first birth, the proportion of male second
births would be approximately the same as the
frequency of male second births in all of the 2000
counties. This, in fact, is the case, The approximate
equality 526/1032 = 1024/2000 can be rewritten
as 526/2000 = (1032/2000) (1024/2000).
Hence, if A = {MM,MF} (the first birth is male),
and B = {MM,FM} (the second birth is male),
then A ¢ B = JMM} (both births are male) and
the approximate equality tells us that in our model
we want P(A @ B) = P(A)P(B). II1.2 should
then provide an acceptable model for the experi-
ment of noting the sex of the first and second born
children in your county in the new year.

Let us turn next to an example that exhibits
a lack of independence. A child is selected at ran-
dom: Its sex is noted as well as whether or not
he or she is color blind. The possible outcomes for
this experiment are listed in model IIL.3. The
simple event MC corresponds to the result that
the child selected is both male and color blind
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while the simple event FN corresponds to the re-
sult that the selected child is female and normal.
MN and FC have similar interpretations.

Model I11.3
Event Set
MN MC FN FC
Probability
(.93) (.515) (.07)(.515) (.995) (.485) (.005) (.485)
Table i
C N Total
M 72 958 1030
F 5 265 970
Total 77 1923 2000

The assignment of probabilities in ITL.3 must be
based on observed frequencies. Referring to Table
11, the ratio 72/77 is not even close to the ratio
1030/2000. Among those who are color blind, the
male frequency, 72/77 is much greater than
the male frequency in the general population,
1030/2000. Color blindness and sex are related.
Hence, if A = {MC,MN}, the event that the
child selected is male, and if B = {MCJFC,
the event that the child selected is color blind, then
A 0 B = {MC}, the event that the child selected
is a color blind male, and we do not want P(A 2 B)
— P(A)P(B). This, in fact, is the case in IIL3
because (.07)(.515) does not equal {.515) (.07)
(.515) + (.005) (.485)].

Tables like Table I and Table II should, I
feel, be used as teaching aids when independence
is discussed in the classroom. You can form tables
with numbers that are not based on actual popu-
lation figures as was done in Table I and Table II
or you can have your students generate actual
data with, say, a coin and a die. Actual data is,
of course, preferred but if you choose to use con-
trived figures, the numbers selected should pro-
duce frequencies that are close to frequencies that
are based on actual data. The probabilities in
models I11.1, II1.2, and II1.3 are close to the fre-
quencies based on a large number of actual ob-
servations. The important thing to keep in mind
is that arrays of data like those shown in Table I
and Table II provide the student with a quantita-
tive bridge joining his intuitive notion of unre-
latedness with the multiplication of probabilities
within the model. The tables should help to make
it clear that the independence of two events means
that the frequency of the first event among those
trials where the second event occurs must be ap-
proximately equal to the unrestricted frequency
of the first event.
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Houghton Mifflin gives you the
best two texts you will ever use
in your algebra classes.
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Structure and Method
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