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/Omdic!enf % meddage

By the time you receive this, CAMT will have
come and gone. From the appearance of the pro-
gram, Nancy Ogden has planned an outstanding
program. Our thanks go to her, as well as the other
committee chairmen and committee members who
spent so much time and effort to make the program
and meeting a successful one. We must all be
indebted to Alice Kidd for her continuing efforts
to coordinate all the activities.

You will receive this Journal during the Holiday
Season — a time all of us use to some extent to
reflect back upon the year’s activities and rejoice
in the accomplishments, and resolve to correct our
errors. I wish each of you would join me in re-
solving to make TCTM a growing, vital organiza-
tion in the year ahead. This can be accomplished
as each of us assumes responsibility to be a more
enthusiastic and willing worker.

According to the Constitution, it is my obliga-
tion to make a report to you concerning the “state-
of-the-council” for the year. It is a pleasure to tell
you our membership is nearing 1000, our finances
are becoming more respectable, and our activities
increasing. Our first newsletter will be off the press
soon. We hope for at least two more during the
year. Membership reminders are also being mailed.
Should you have paid your dues and still receive
a reminder, please return the card with this infor-
mation concerning when and where the payment
was made.

The journal, as well as the newsletter, will con-
tain membership forms. Please share these with
your fellow teachers and encourage them to become
a part of our organization. As each of us becomes
a membership campaigner, we will become the
organization we should be.

On behalf of the officers of TCTM, may the
New Year be filled with humerous joys, successes,
and dreams being fulfilled beyond your highest
expectations.

BILL ASHWORTH

The Euclidean Algorithm and Its Applications

by Manuel P. Berriozabal (Berri)
Professor of Mathematics
University of New Orleans

New Orleans, Louisiana 70122

One technique to compute the greatest common
divisor (GCD) of two nonzero integers is through
the use of the Euclidean Algorithm. In fact, by
use of this algorithm one can show that any two
nonzero integers have a GCD and the GCD can
be expressed as a linear integral combination of the
two integers.

For example 2 is the GCD of 74 and 58 and
(1) 2 = 74(11) 4 58(—14), the equality showing
that 2 can be expressed as an integral combina-
tion of the two integers 74 and 58. Of course, to
compute the GCD of two nonzero integers, it is
usually easier to examine the prime factorizations
and find the product of the common prime powers
of each factorization. The GCD is this product if
it exists; otherwise, the GCD is 1. However, this
latter technique will not determine an appropriate
linear integral combination. To compute (1), one
can employ a trial-and-error method which is cum-
berson, disorganized, and not always productive,
Or one can use a systematic computational device
like the Euclidean Algorithm which we will now
illustrate in the first example.

Example 1. Compute GCD (74,58) and write it as
a linear integral combination of 74 and 58.

Solution
(2):@-14—16
_5—8_|:’_1—i|'3-|—10
16] = [10] 1 + 6
[10] =[] 1+ 4
[6] = 4]+ 2
(1] =[2]2+ 0

In the first step of the computation, we applied
the division algorithm to 74 and 58 and obtainexd
a quotient of 1 and a remainder of 16. In the
second step, we applied the division algorithm #o
58 and 16 and obtained a quotient of 3 and a re-
mainder of 10. We repeat the division algoritham
for the pair 16 and 10, then for 10 and 6, and fim-
ally for 6 and 4 where through this technique vwe
end up with the last non-zero remainder of 2. T/1s
last non-zero remainder is the GCD of 74 and 5 8.

Next, by using (2), we show how one writes 2
as a linear integral combination of 74 and 58.
From (2), we see that
(3) 16 = 74(1) -+ 58(—1)

10 = 58(1) + 16(—3)
6 = 16(1) 4 10(—1)
4 = 10(1) + 6(—1)
2 = 6(1) 4+ 4(—1)




Starting with the last equality and working back-
wards with a series of substitutions, we obtain the
following results
2 = 6(1) + 4(—1) = 6(1) [10(1) + 6(—1)]
(—1) = 6(2) & 10(—1)
= [16(1) 4+ 10(—1)1(2) + 10(—1) = 16(2)

+ 10(—3)

— 16(2) + [58(1) 4+ 16(—3)1(—3) = 16(11)
+ 58(--3)

— [74(1) 4 58(—1)1(11) + 58(—8) = 74(11)
1 58(—14)

Thus we have a systematic means (namely the
Euclidean Algorithm) of writing GCD(74,58) as
an integral linear combination of 74 and 58. Fur-
thermore, this method will work for any two non-
zero integers. The fact that the last non-zero re-
mainder is equal to the GCD of 74 and 58 can be
seen from the following argument which is appli-
cable to any pair of non-zero integers.

Starting from the bottom and working upward
in (2), we see that 2 divides 4. Going up to the
next equation, since 2 divides 2 and 2 divides 4,
then 2 divides 6. Going up to the next equation,
since 2 divides 4 and 2 divides 6, then 2 divides
10. Going up to the next equation, since 2 divides
6 and 2 divides 10, then 2 divides 16. Since 2 di-
vides 10 and 16, then 2 divides 58. Since 2 divides
16 and 58, then 2 divides 74. Thus 2 is a common
divisor of 74 and 58. Now let k be any common
divisor of 74 and 58. To show that 2 = GCD
(74,58), it suffices to show k divides 2. Here we
use (3). We start with the first equality and work
down to the last equality to arrive at the conclu:
sion that k divides 2.

Since k is a common divisor of 74 and 58, then k
divides 16.

Since k divides 58 and 18, then k divides 10.
Since k divides 16 and 10, then k divides 6.
Since k divides 6 and 4, then k divides 2.

T'hus 2 = GCD(74,58).

Another question we can easily dispose of is
whether GCD (74,58) can be written uniquely as a
linear integral combination of 74 and 58. The an-
swer is NO. In fact, the following gives a syste-
matic method of finding infinitely many such com-
binations.

2 — 74(11) + 58(—14) = 74(11) + 58(—14)

+ 0
= T4(11) + 58(—14) 4 74(58) + 58(—74)
74(11 + 58) + 58(—14 -} —74) =
74(69) 4+ 58(—88)

Thus 2 is written as another linear integral com-
bination of 74 and 58. A general formula for find-
ing infinitely many solutions is 2 = 74(11 + 58n)
+ 58(—14 4 —74n) where n is any integer. A
similar formula applies to any pair of non-zero in-
tegers.

Another question we may pose is whether we
can give a characterization of integers which can be
written as a linear integral combination of 74 and

I

58. For example, can both 15 and 18 be written as
such a combination, or in other words, do there
exist pairs of integers a,b and e,d so that 15 =
74a L 58b and 18 = 74c + 58d? In the case of
the second equality, the answer is yes. Since 2 =
74(11) + 58(—14), then multiplying each side
by 9 we obtain 18 = 74(99) + 58(—126). Let us
now consider whether the first equality can exist.
Suppose there exist integers a and b so that 15
— 74a + 58b. Since 2 is a common divisor of 74
and 58, then 2 must divide 74a and 58b, that is,
2 must divide 15, this is a contradiction. Conse-
quently, the first equality cannot exist. These two
examples illustrate the fact that an integer jis a
linear integral combination of 74 and 58 if and only
if 2 divides i, that is to say, GCD(74,58) divides i

In summary we state the following general re-
sults.

If a and b are two non-zero integers, then GCD
(a,b) exists. Also, there exist inlegers x und y such
that GCD (a,b) — ax'-}- by. Furthermore, an in-
teger j can be written as a linear integral combi-
nation of a and b if and only if GCD(a,b) divides.j.

Let us now examine the following examples.

Example 2. Compute GCD(74,—58) and write it
as a linear integral combination of 74 and —58.

SOLUTION
Clearly GCD(74,—58) = GCD(74,68) = 2.
Using example 1, 2 = 74(11) + 58(—14) =
74(11) + (—58)(14), this last expression heing a
desired integral combination of 74 and -—58.

Example 3. Compute GCD(-—74,—58) and write it
as a linear integral combination of —74 and
—58,

SOLUTION
Again, GCD(—74,—58) = GSD(74,68) = 2.

Also, 2 = 74(11) + 58(—14) = 74(—11) +

—-58(14), this last expression being a desired inte-

gral combination of —74 and 58.

We summarize the content of examples 2 and 3

as follows: if ¢ and b are two non-zero integers,

then GCD(a,b) = GCD(|a|,|b]). GCD (a,b) can
be written as a linear integral combination of a
and b by expressing GCD(a,b) as an appropriate
linear integral combination of |a| and |b| and
making suitable adjustments of signs in this ex-
pression.

Finally we consider the case of finding the GCD
of three non-zero integers and writing it as a linear
integral combination of the three integers. Before
we consider this situation, we need to establish the
following result. If a, b, ¢ are three non-zero inie-
gers, then GCD(a,b,c) exists and GCD(a,b,c) =
GCD(GCD(ab), ¢). In the same manner of easily
finding the GCD of two non-zero integers, we can
find the GCD of three non-zero integers by exam-
ining the prime factorizations of each and ihen

compute the product of the common prime powers.

(Continued on Page 6)




SCHOOL MATHEMATICS
Concepts and Skills, K-6

Duncan + Capps * Dolciani * Quast Zweng

THE PROGRAM, IN BRIEF

The intent of Schoo/ Mathematics: Concepts and
skills is specific: to help elementary children learn and
master the fundamental mathematical facts and skills
necessary for further education and, ultimately, for
adult life. The authors are fully aware of the impor-
tance of teaching the basic computational skills —
adding, subtracting, multiplying, dividing. To help
students learn, practice, and maintain these skills,
School Mathematics uses a consistent, single-
method approach to assure a clear development of
each new topic. And to help students see mathemat-
ics working in everyday life, as frequently as possibie,
exercises and activities are in the context of what
children know.

Youwilllike what School Mathematics teaches — and
the way it teaches. It will please you to discover how
thoroughly and easily students learn math with this
program. And how efficiently and pleasurably it can
be taught,

At the core of School Mathematics are the features,
tested and proven in classrooms of the authors’ ear-
fier well-established programs. These popular and
accepted features, together with the new focus and
new material of School Mathematics, create a basal
mathematics course that successfully meets the cur-
rent requirements of your classroom.

HOUGHTON MIFFLIN

MATHEMATICS
™ Houghton

PROGRAM
)
XA H
7 M I ffl I n 6626 Oakbrook Blvd., Dallas, Texas 75235




of each factorization. The GCD is this -product if
it exists; otherwise the GCD is 1. Now let k =
GCD{(ab,c) and d = CCD(GCD(a,b), ¢). In order
to prove k = d, it suffices to show k divides d and
d divides k. Since k = GCD(a,b,c), then k divides
a, k divides b, and k divides c. Since k divides
both a and b, then k divides GCD(a,b). Thus k
divides GCD(GCD(a,b), c) that is, k divides d.
Next, we will show d divides k.

Now d divides GCD(a,b) and d divides c.

Thus d divides a and d divides b and d divides c.
Hence, d divides GCD{a,b,c), that is, d divides k.
Consequently, k = d.

Example 4. Compute GCD(54, 78, 83) and write
it as a linear integral combination of 54, 78, 83.
SOLUTION

By the previous result, GCD(54, 78, 83) = GCD
(GCD(54,78),83) = GCD (2,83) = 1.

By using the Euclidean Algorithm, we write 1 as
a linear combination of 2 and 83.

83 — 241 + 1

41 — 141 + 0.

Thus 1 = 83(1) + 2(—41).

Next, by using the Euclidean Algorithm, we
write GCD(54,78) as a linear integral combination
of 54 and 78. Since the work has been done in ex-
ample 1, we use that result and we have 2= 74(11)
+ 58(—14).

Substituting in the last equation of (3), we ob-
tain

1=83(1) + [74(11) + 58(—14)] (—41)

— 83(1) + 74(—451) + 58(574).
Thus GCD(54,78,83) — 1 is writfen as a linear in-
tegral combination of 54, 78, and 83.

An observation to be made from the last example

is that the GCD of any finite nonempty subset of

non-zero integers can be written as a linear integral

combination of these integers.

“Metric Measure? Yes, But First What is Measure?”

Dr. Richard A. Little

Kent State University
Canton, Ohio

In the last two or three years, the switch to
Metric Measure which lies ahead for the United
States has received extensive attention by educa-
tors. Some mathematics educators have attempted
to extricate their souls from the criticisms being
heaped on the “New Math” by flinging themselves
thoughtlessly onto the calliope wagon, blaring a
tune called “Metrication.” Those already aboard
were disheartened by the vote in the U.S. House
of Representatives on May 7, 1974. On that day,
our representatives applied a little understood par-
lismentary procedure to block any amendments to
House Bill 11035. The process was employed to
gain additional prospective on the bill and its
amendments (in this day, let us occasionally give
our legislators the benefit of the doubt). The action
by the U.S. House did NOT defeat the bill (as
many of us initially supposed), but only postponed
the deliberations on it. Its final disposition will un-
doubtedly occur soon. Even if the bill is defeated,
we can still look forward to a Metric America in
less than 15 years because many of our industrial
giants have already established metrication sched-
ules. We in education should not dispare of our
lawmakers’ action but thank them for the addi-
tional time they have provided. Let us use the
time to answer the central question at hand; “What
is Measure?” Let us not ride a calliope called “Me-
trication” into oblivion. After allowing “New
Math” to be wrenched from us and exploited to
the detriment of sound education, let us not lose
this opportunity to redeem ourselves.
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The whole of the concept of measure can be
summed up in three sequential ideas; (1) a collec-
tion of people has an object which they wish to
ascertain the size or value of (i.e., they want to
measure it); (2) They must determine a unit of
size or value which is compatible with the object
to be evaluated; (3) They must determine the
number of units in the object. Thus, “to measure”
is “to count the number of agreed upon units in
the given object,” and the measure of the object
is a number. Hence, we see why mathematics leach-
ers ought to be concerned with measure in general,
and metrication in particular. Let us explore each
of the three basic concepts of measure.

An object which we wish to evaluate. Measure
deals primarily with things, not with feelings. Re-
searchers are still at a very primitive level in their
pursuit of measuring human affections or thought
processes. S0, we can concentrate on the items of
commerce in our classroom pursuit of measure. In-
deed, the very genesis of measure was in commerce.
In today’s intercontinental commerce, complex ma-
chines are assembled from subcomponents con-
structed on two or three continents (e.g., televi-
sion sets), and we should easily grasp the need for
world-wide standard units of measure.

A unit of measure must be compatible with the
object to be measured. Most often, the unit of
measure most compatible to a given object is an
abstract model of the object to be measured. Thus,
a meter, itself a length, is a standard unit for meas-
uring length. A square meter, itself a region, is a




standard unit for measuring the size of a region.
A standard unit of measure did not have to be very
“standard” when commerce rarely went beyond the
village of the fief. As commerce expanded, the need
for more widely accepted standard units of meas-
ure became evident. As one studies the history of
measurement, the constant progress of more widely
accepted units of measure parallels the progress of
intercontinental commerce. Today, only Canada
and the Untied States among the world trade lead-
ers remain outside of the system of world com-
merce that is totally metric. The metric system Is
definitely superior to the U.S. Standard System,
S0 we are In no position to do anything but to adopt
metric units. Common sense not only dictates this
route, but a little known agreement among the
countries of the European Common Market to ac-
cept only those products that are in metric units
and sizes after 1977, also indicates that there is
no choice. Worldwide commerce necessitates world-
wide standard units and the metric system pro-
vides the best and most comprehensive system yet
devised by humans. The United States must
change. .

The third idea related to measure is the one to
which teachers and students must give their closest
attention. How do we determine the number of
standard units in a given object? Here is where the

laboratory approach must be employed. We mFSt
not tell pupils about measure; we must provide
them with experiences in measure. The st].ldent
should be provided with innumerable experiences
in measuring. These measuring experiences shou
establish models for a liter, a meter and a kilogram.
These models should become pictures in the stu-
dents’ minds. By first guessing then measuring, and
later approximating then measuring, the S.tt}dent
will gain understanding of measure and proflqlency
in the four arithmetic operations using decimals.
(See recent issues of the AriTHMETIC TEACHER for
excellent suggestions of metric measure activities
for youngsters.) .

The only major weakness in the “New Math’
curriculum was its pursuit of theory at the expelri-
ence of “hands-on” experiences. We are fortunate
that metrication provides us with the opportunity
of “hands-on” applications for measure activities
in mathematics class. Let us stress the three basic
concepts of measure at all times;

1. An object suitable for measure (usually 2n
object of commerce) i

2. A standard unit of measure compatible with
the object to be measured.

3. A method for determining the number of
standard units in the given object.

Fleas, Ratios, and Problem Solving

by Arthur A. Hiatt, Ph.D. Associate Professor,
Education and Mathematics
California State University, Fresno
Fresno, California

Introduction. The following problem was used
not so much to teach content as it was process.
In other words, this type of problem helps the stu-
dent develop the ability:

1. to make observations.
2. to organize observations (data)
a) to recognize patterns.
b) to make conjectures (guess).
3. to specialize and generalize.
a) to use inductive reasoning.
b) to reason by analogy.
4. to invent symbolism to express mathematical
ideas.
a) to accept conventional symbolism.
5. to prove conjectures.

a) to invent or accept an axiomatic struc-
ture.

As all experienced teachers know, the more bhi-
zarre or ridiculous a problem, the more it captures
the imagination of the students. However, for such
problems the teacher must carefully set the stage.

Setting the stage. You enter your general mat_he‘
matics class and place a flea, held captive in a jar,
on your desk. Now, even the least inquisitive S:tﬂ'
dent will find this scene a curious one. The writer
has motivated the problem in many grades from
fourth to high school by such an act. Without fail-
ure, some student has always asked, “What are
you doing with that flea in the jar?’ From this
response many exciting lessons take place. Wirat
follows will be a greatly condensed version of wheat
can happen in a classroom over a period of several
weeks,

The problem. After much discussion, the stu-
dents are led to believe that the flea is being train-
ed to jump on command. Students do not believe
that fleas can be trained to perform. This requir-es
some library work on flea circuses. Since fleas are
known to be good jumpers, the following question
is natural:

If a man could jump as well as a flea, in pro-
portion to his weight, how far could he jump?

In most classes we first considered the jurnpimng
ability of a cat. A good, ten pound, jumping c-at
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can jump about twelve feet. We then construct a
table as follows:
A 10 1b. cat can jump 12 feet
A 920 1b. cat should be able to jump ? feet.
A 170 1b. cat should be able to jump ? feet.

Although the students understand that this is ridi-
culous, they enjoy the problem. From the above,
we organized the data into ordered pairs and
graphed them. From this experience, formulas re-
lating length of jump to weight were invented.
Many opportunities were afforded the students to
verbalize their findings before developing formal
symbolism. :

Total understanding of the cat problem enables
students to solve the flea problem. Students re-
search the necessary information. (Several books
on fleas were checked out of the public and college
library and brought into class.) Some of the facts
were:

1. Eighteen well fed fleas weigh one grain.

2. The average flea can jump eight inches.

3. The average man weighs 170 lbs.

Now, Archimedes Beamon, the captive flea, was
not average; he could jump 13 inches. His weight
figured out to be approximately .0000079 1b. since
one grain is 1/7000 lb.

To make a long story short, if a 170 1b. man
could jump as well as a champion flea, he would
jump about 4,415 miles in one leap. Imagine that,
in one leap from Seattle, Washington to Miami,
Florida with room to spare. Or to look at it differ-
ently, the distance is greater than all the freeways
in Texas put end-to-end.

Qummary. The foregoing was a brief account
of some lessons. It would be impossible to list all
the ideas that came up in the various grades. Of
course, it is easy to see that the following topics
are possible.

1. Ratio 4, Equations
2. Proportion 5. Graphing

3. Formulas 6. D =RT

7. Metric measures

8. The curve a jump follows (parabolas)
9

. Projectiles 12. Area
10. Velocity 13. Functions
11. Tangents 14. Similarity

15. Conversion tables

16. Use of hand calculators (good old fashioned
drill)

17, Rates of change

18. Gravity

19, Large and small numbers

20. Geography

91, Amount of concrete used in streets

Certainly, one could develop enough ideas to
last a lifetime from a problem such as the above.
In addition to the above list, a team of fourth
graders developed a formula for determining the
length of jumps of local animals in the city zoo
and made graphs. A sixth grade class designed hu-
man bodies that were more efficient for jumping.
They used a flea as a model.
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The seventh graders tended to be more sophisti-
cated. One wanted to know how long the jump
would take. This led to trying to time the jumps
of grasshoppers. We probably had more fun with
this problem than any others. Another student
wanted to know if the jumper drops faster, once
he reaches the top of the jump. This led to some
research on the works of Galileo. Since it was be-
yond us, we did not pursue it. However, a few of
them did learn to evaluate Galileo’s formulas for
the path of a projectile.

Once we learn that students love to mathema-
tize the world, get over our fears of not being able
to answer all their questions, perhaps, then we can
assist them in learning mathematics, especially
process. Try a problem tomorrow, have fun, and
with your students mathematize the world around
you.

Nominating Committee

At the meeting of the TCTM Executive Com-
mittee during CAMT, December 4-6, 1975, the fol-
lowing nominating committee was appointed:

Madolyn Reed, Houston ISD, Chr.

Mrs. Bennett Touchstone, Sinton

Jim Bezdek, NTSU, Denton

Offices to be filled in the fall of 1976 are vice-

president (secondary) and treasurer. If you have
suggestions for names of nominees, please send
them to a member of the committee NOW. The
slate must be submitted to the editor for publica-
tion by March 1, 1976.

El Paso Hosts Meeting

The El Paso Council of Teachers of Mathematics
will host a NCTM Meeting on February 26-28,
1978, There will he more than 135 section meet-
ings and more than 35 workshops stressing quality
teaching at every level. Speakers are coming from
over thirty states and provinces, including British
Columbia, Florida, New York, Chihuahua, Wash-
ington and California. J oin us as we henér Glena-
dine Gibb and Irene St. Clair for their numerous
contributions to mathematics education.

The program will begin on Thursday, 26 Febru-
ary, at 1:30 P.M. and end on Saturday, 28 Febru-
ary, at 12:15 P.M. All convention activities will
be held at the El Paso Convention and Civic Cen-
ter, with the exception of the reception, which will
be held at the Hotel Paso del Norte.

Betty Beaumont Nominated

Congratulations to Betty Beaumont. Her name
appears among the nominees of NCTM directors to
be elected in 1976. We urge all Council members
of NCTM to support Betty when the election bal-
lots arrive in January.




Ma ertatics Around Us

The real math program for 1976

Highlights of Mathematics Around Us Grades 1-6:

* Practical, real-world applications * Extensive individualizing features
* Heavy emphasis on basic computational skills Complete management system
* High visual impact, minimum reading e Efficient testing program

* Thorough development of the metric system

Texas representatives: Claude Campbeli, Bill Brunson, Max Harper, Jim Kami,
Clark McPherson, Al Walker, Ron Wilkins, Dean Wilkinson
consultants: Pat Shaver, Sue Wagley

Scott, Foresman and Company 11310 GeminiLane Dallas, Texas 75229




Instances of Pascal’s Triangle

by David F. Robitaille
University of British Columbia

Pascal’s Triangle (see Figure 1) is a fascinating
example of a mathematical pattern. The Triangle
was used by Blaise Pascal (1623-1662) in connec-
tion with his work in the field of probability. In
spite of the fact that the arrangement bears his
name, Pascal was not its discoverer. Boyer (1968)
has traced the origins of the Triangle back to the
twelfth century in Chinese works where it was
used to find co-efficients of binomial expansions.
In these as well as in some later works, the ar-
rangement is called the Arithmetic Triangle.

Figure 1 — Pascal’s Triangle

One intriguing aspect of Pascal’s Triangle is the
number of seemingly different instances of it that
can be found. Upon close examination, one can dis-
cern a common base underlying several such in-
stances, but this does not detract from the sur-
prise students feel upon seeing Pascal’s Triangle
emerge from so many situations.

1. Coefficients of the Powers of a Binomial

The most familiar instance of Pascal’s Triangle
arises from the numerical coefficients of the powers
of a binomial. We compute the non-negative inte-
gral powers of a binomial, beginning with the zero
power, and detach the numerical coefficients of
the resulting expansions. This procedure is illus-
trated in Fi

Figure 2 — Binomial Coefficlents
The coefficients, when displayed in the usual
triangular arrangement, form the rows of Pascal’s
Triangle. In this instance, the rows of the Triangle
may be used to determine the numerical coeffi-
dents of a binomial expansion and vice versa.

2. Binomial Probability

The rows of Pascal’s Triangle may be generated
by answering the question, “What are the prob-
abilities of obtaining 0, 1, 2, 3, . . ., n heads in one
flip of n coins?” For example, in the case where n
is 3, we are asking for the probabilities of obtain-
ing 0 heads, 1 head, 2 heads, or 3 heads in one flip
of 3 coins. These probabilities are 14, 34, 3%, and
i respectively as can be seen from an examina-
tion of the sample space for this experiment:

8= ;HHH, HHT, HTH, HTT, THH, TTH, TTT
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The numerators of the four fractions are the ele-
ments of Row. 3 of Pascal’s Triangle, and any row
of the triangle may be constructed in a similar
way. Construction of the top row of the Triangle,
ie., Row 0, by asking “What is the probability of
obtaining 0 heads in one flip of 0 coins?” should
provoke some lively discussion among your stu-
dents.

The data obtained from answering the coin-
flipping questions might be displayed as shown in
Table 1.

Y

: Pt
Table 1 — Probability of Obtaining n Heads
3. Subsets of a Finite Set

Textbooks at the junior high school level fre-
quently include an enrichment section dealing with
the number of subsets, proper and improper, or a
finite set. Such a section is usually designed to have
students discover the generalization that a set con-
sisting of n elements has 2" subsets. However, this
topic may also be used to provide another instance
of Pascal’s Triangle if we ask a further question:
“How many subsets of 0 elements, 1 element, 2
elements, . . ., n elements does a set consisting of n
elements have?’ For example, given a set with 4
elements, how many subsets does it have that con-
sist of 0, 1, 2, 3, and 4 elements? The answers,
which can be found in a number of ways, are 1
subset of 0 elements, 4 subsets of 1 element, 6
subsets of 2 elements, 4 subsets of 3 elements, and
1 subset of 4 elements. These numbers (1,4,6,4,1)
constitute Row 4 of Pascal’s Triangle and any row
of the Triangle may be found in a similar way.
The data obtained might be presented as in
Table 2.

Table 2 — Subsets of a Finite Set



4. Networks
A network, such as that shown in Figure 3, pro-

vides yet another instance of Pascal’s Triangle
7 L R sy

Figure 3

“How many ways are there o get from START
to point A?” to Point B?” For convenience we de-
note the rows of the network in the same way
as the rows of Pascal’s Triangle: START is Row
0, the next line is Row 1 and so on. There is ex-
actly 1 way of reaching either of the two points
in Row 1 from START. We can record this on

the network as shown in Figure 4.
: S S o

F}gare 4

Continuing to Row 2, it is clear that there is only
1 way to reach either end point of Row 2 {or of
any subsequent row for that matter) from START
and that there are 2 ways of reaching the remain-
ing point of Row 2. (see Figure 5.)

3 ¥

2

S

Figure 5

The familiar pattern becomes evident again. Con-
tinuing to Row 3, we see that there are 1, 3, 3, and
1 ways of reaching these four points from START.
For the sake of completeness, we place a 1 at
START and obtain yet another instance of Pas-
cal’s Triangle.

5. Light Switches

Given a row of n light switches, in how many
ways can we have 0, 1,2, . . ., n switches on? For
example, given a bank of 3 switches and using the
numeral 1 to represent a switch in the ON condi-
tion and O to represent OFF, we sce that eight
possible arrangements of the switches are

000, 001, 010, 011, 100, 101, 110, 111
(Note that these are the binary representations of
the numbers 0 through 7.) Counting the possibili-
ties, we have 1 way to have 0 switches ON, 3 ways
to have 1 switch ON, 3 ways for 2 switches, and 1
way for 3 switches. As before the data may be
summarized in a table.

Table 3 — Arrangement of Light Switches

6. Partitions

Given a positive integer n, how many ways are
there to express n as the sum of 2 or more positive
integers where the order of addends is important?
For example, how many ways are there to express
the number 5 as the sum of 2 or more positive in-
tegers. Tabulating the possibilities we have:

144 141438 1414142 1+14+1+14+1
411 14341 1+1}241
2+3 34141 14241+1
3+2 1+242 2413141
24142
24211

If, for the sake of completeness, we consider 5
by itself to be a partition of 5 we then have
1,4,6,4, and 1 ways of writing 5 as the sum _Of
1,2,3,4, and 5 positive integers respectively. This,
of course, gives us Row 4 of Pascal’s Triangle and
any other row may be generated in an analogous
way.

7. Mathematical Spelling : .

In Figure 6, how many different paths result in
the correct spelling of each word?

Figure 6

Once more we have an instance of Pascal’s Twi-
angle, this one being a slightly-disguised version of
the network instance discussed earlier.

More than one mathematician has said that
mathematics is the study of patterns. One of the
intriguing aspects of mathematical patterns such
as Pascal’s Triangle is that the same pattern seerms
to occur in many different situations. Your stu-
dents may enjoy looking at these various instances
of the Triangle and some may be inclined to puar-
sue that interest even further. Such students mla‘?;]}t
be interested in investigating the close relationship
that exists between Pascal’s Triangle and the Fi-
bonacci Sequence, for example.
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