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countered. There is no need to provide detail about
the metric system as a system; that kind of infor-
mation just won’t be of much value for most
adults. Certainly approaching the metric system
via tables of units and equivalents will mask the
information that will be of practical importance.

At the same time that the metric system is in-
troduced, however, groundwork must be laid so
that parents understand how information they get
will fit into the system that their children will
learn. The differences between the pedagogical ap-
proaches used with adults and those used with
their children should be made implicit. For exam-
ple, the undesirability of teaching conversion fac-
tors to children might be pointed out.

One important consideration in developing adult
education programs is the timing of instruction.
It should be provided just as the need is felt by
adults. If provided too early it will be washed out;
and if provided too late, it will not satisfy the need.
Public service groups such as Jaycees and the local
Chamber of Commerce may be quite helpful to
teachers in reaching a wider audience than might
be met through groups such as. the PTA. The in-
volvement of the community in implementing a
program of public information can significantly en-
hance the effectiveness of any such program.

How should the metric system be taught to chil-
dren? An observation of primary importance is
that the metric system is just one of the infinite
variety of standard systems that could have been
developed. It is the standard system that is cur-
rently accepted throughout most of the world; so
as incorporated in the mathematics curriculum,
the metric system as it embodies the properties of
a standard measurement system should be bal-
anced against the metric system as it shows itself
in practical, real-world situations. Also important
is the body of information that constitutes the
metric system.

The metric system of measurement is one stand-
ard system of measurement. As such it should be
put in the perspective of general concepts of the
theory of measurement. ‘That is, initial discussion
should strive to develop understanding of the proc-
ess of comparing physical objects with a predeter-
mined unit and assigning to the physical object a
number as a result of the comparison. Discussion of
desirable properties of a system of standard units
should flow from this general setting. Arbitrary
non-standard units can be used to develop the
concepts of precision and -error and to motivate
the need for widely accepted standard units, which
are coherently related to each other. It is impor-
tant in such a development both that measure-
ments be assigned to objects and that objects be
matched to given measurements. The correspond-
ence between objects and measurements is in a
real sense reversible, though typically only the
measurement-assigned-to-object aspeet has been
emphasized in curriculum materials,

One activity that can be used in the study of
measurement and developed with the study is esti-
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. mation. Estimation with arbitrary units has the
potential of fostering flexibility in making com-
parisons between objects. Such flexibility would
make the metric systemn units more useful in that
students would develop a better feel for sizes of
objects than if estimation were never done. Estima-
tion should of course be done as metric units are
introduced, but an introduction to estimation with
arbitrary units seems essential.

Estimation can take two major forms. The most
common is the estimation of the measurement of
one attribute of some given object; e.g., the length
of a table, the area of a floor, the volume of a
glass. A second kind of estimation is the identifi-
cation solely by sight of an object to match a given
measurement; e.g., find something 25 cm long,
find something with an area of 6 m2 For example,
what do you have in your pocket or purse that has
an area of 1 dm?? If you measure the area of a
one dollar bill yow’ll find that it provides a non-
“square model of an area very close to 1 dm? As a
variation on this, consider the problem of finding
three objects whose total length is 2 m. Such an
activity forces the learmer fo think in terms of
physical world models of measurement units. Such
conceptual models are probably more useful than
the concepts developed by the symbolic manipu-
lations that typically appear in textbooks.

Practical uses of metric units in the everyday
world must also be considered. Not every unit will
be used equally often, so special attention must be
paid to those units that must be best understood:
meter, centimeter, millimeter, kilometer; liter, mil-
liliter; kilogram, gram; degree Celsius. Those who
claim that only the common units need to be
taught, however, miss one of the essential beauties
of the metric system. It is, after all, a system, and
the simplicity is best revealed when the interrela-
tionships among units are understood. The proper
balance can be provided naturally by using practi-

cal situations for studying measurement. Common

units will be highlighted in this way, and other in-
structional time can be used to give attention to
the system as an entity. _
Probably most imporiant is the actual use of
metric units in physical situations. Through meas-
urement and estimation activities, students will
develop a feel for the sizes of the units and will
. be better able to compare different units. As fol-

low-up of these activities, more abstract exercises
can be used, in moderation of course.
1. For each pair of measurements- circle the
gmaller:
a. 6m, 6000 cm
b. 4.25 kg, 425 g
c. 8 m?, 800 000 cm?
9. List the following in increasing order:
Tm, 245 dm, 6cm, 82mm
As skill in using metric units increases,
more complicated activities can be devised.

3. Make a pattern that will fold into a box with-
out a top with a volume of 24 cm? How many
patterns can you make?

4. Draw a triangle with perimeter of 26 cm and
an area of 24 cm?.

One other way in which the metric system can
be taught, or at least practiced, is through games.
The caution to be made here is that most of the
games produced commercially involve only the
symbolic relationships among various umits. Con-
sequently, the learning that takes place is almost
certainly at a very abstract level. Unless consid-
erable concrete experience is provided before the
use of these games, the effects of the learning are
likely to be washed out rather quickly. Typical
commercial games can be used to provide practice
at an advanced stage of learning the metric sys-
tem, but too early introduction of these might put
emphasis on the wrong points.

Any activity that involves measurement can be
adapted for use in teaching metric units. The tre-
mendous interest that has developed in the metric
system will hopefully spark interest in making
wildly creative problems, games, puzzles, and ac-
tivities for teaching measurement.

Answers to pretest:
1. T

. F (about 1 cm)

. F (about 214 minutes)

about 100 kg)
easy to lift)

2
3
4
5
6.
7
8
9
0

—

(about.70° C)
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IS TRANSFORMATION IN GEOMETRY REALLY NEW?

by KENNETH CUMMINS
Keni State University

The answer is “ves and no” and the purpose of
this note is to discuss and enlarge on this reac-
tion.

A quick “no” might come from the rather super-
ficial thought that the not-well-defined ‘“‘super-
position” of Euclid used in various ways is the
result of transformations but Euclid seemed not to
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regard it as such. His “superposition” seemed to
involve getting certain given corresponding pairs of
equal parts of figures to coincide in some manner
and then to argue with the help of previous state-
ments that the other pairs would therefore coin-
cide and hence the figures would be congruent. On
the other hand, the transformation used in geome-
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try is clearcut and well-formulated — it is a one- -

to-one mapping onto in the space defined from
one set of points to another set of points. Ab-
stractly there is no sense of motion in the mapping
but in the practice of using isometrics one thinks
of reflections, translations and rotations as physi-
cal processes. Hence in the above sense we turn
our hastily said “No” to a more carefully arrived
at “Yes— transformations are new.”

In another instance in geometry, however, there
is used a strategy which is indeed close to the
isometry known as rotation, Most texts which use
the Legendre sequence prove the alternate-interior
angle theorem (If two parallel lines are cut by a
transversal then the alternate-interior angles are
congruent.) by using “hypotenuse-and-angle” but

e
e
N
3 %ér:P A4
A 1D

a few others have another method. P is taken as
the midpoint of AB and previous theorems permit
one to say that if line m is perpendicular to 1
then it is perpendicular to I’ alse and /8\ ADP
and BCP are both right triangles with/ 12/ 2
by virtue of the vertical-angle theorem. Now rotate
the APBC about its vertex P so that PB falls

along PA. This rotation (half-turn) causes B and
A to coincide and line m to coincide with itself
and it keeps angles 5 and 6 as right angles. Since
there is at most one line from the point A (= B)
perpendicular to the line m AD falls along BC
and therefore/ . 322/ 41,

It appears that the above method using rota-
tion could be placed in the more modern setting
and language of transformation approaches and
would serve well. Indeed, Coxford and Usiskin use
two reflections — one about m and the other about
the line perpendicular to m at P — to prove this
theorem and the composite of these two reflec-
tions about P is the half-turn used by Milne and
Wenthworth.? We are therefore led to “No—trans-
formations are not new” as an answer to the origi-
nal question.

Perhaps one result of this study is the hope that
teachers who feel reluctant to employ transfor-
mations in geometry might reflect on the fact that
writers before the turn of the century were using
such methods in a less sophisticated manner but
with convincingly effective results. Of course, mod-
ern approaches in all the different ways to study
geometry are more precise and have firmer logical
underpinning, and we would expect them to be so.

1 This proof appears in Milne, William J., Plane Geom-
etry (Chicago: American Book Company, 1899), p. 30.
A similar one using rotation is found in Wentworth,
G.A., Plane and Solid Geomeiry (New York: Ginn and
Company, 1888), p. 26.

2 Coxford, Arthur F. and Usiskin, Zalman P., Geometry:
A Transformation Approach (River Forest: Laidlaw
Brothers, 1971), p. 214.

SOME COMMON ERRORS IN THE CALCULUS CLASSROOM

SALLY LiIPSEY
Brooklyn College

Isaac Newton (1642-1727), and Gotified Wil-
helm Leibniz (1646-1716) are given credit for in-
troducing calculus to the world in the 17th Cen-
tury. The invention of analytic geometry and cal-
culus marked the beginning of the modern era in
mathematics, which had thus progressed from an-
cient geometry and medieval algebra. For almost
100 wyears, calculus was a controversial subject
argued about by mathematicians, physicists and
philosophers. There were struggles to assess the
proper credit due each inventor as well as to estab-
lish a firm logical support for what seemed to some
just a collection of compensating errors. It was
Augustin Cauchy (1789-1857) who set down one
of the best early treatises on the logical founda-
tions of the calculus.

Some of the early errors in calculus that ap-
peared in the work of even distinguished mathe-
maticians recur in the work of the student of ele-
mentary calculus. He also has other difficulties
with the concepts, some of which are very different
from those studied in precalculus courses. In addi-
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tion, his algebraic techniques are often so weak
that the struggle to master the new concepis is
undermined. It is helpful for the instructor of cal-
culus to anticipate errors students commonly make
in order to prepare plans for prevention or reme-
dial action,

Before taking calculus, students learn the defi-
nition of “absolute value”:

[x|ifx>0
—xi1ifx <0

but rarely apply it to situations commonly found
in the calculus course. Hence students are found
to write:

lX! +2x—1)+4(x—2)

. { x+2(x—1)+4(x—2),x2=0
=] —x—2(x—-1) —4(x—2),x<0

1zl =

_ix+2E-1)+4(x—-2),x>0
=] —x+2(—x—1)+4(—x—2),x<0

The errors indicate that the definition has heen




memorized sufficiently well for purposes of finding
| —3 |, but without real comprehension of its
meaning.

The absolute value function is important
throughout the calculus course for illustrating con-
cepts (such as that of a function which is con-
tinuous but not differentiable at a point}, for clari-
fying the meaning of ' (f(x)2, and for proofs.
It therefore pays to give students special practice
in the use of the absolute value symbol, restating
the definition as follows:

(x) if >0
1Q (x) | = { gé)(}l:)Qif(QX)(x)‘<0

The absolute value symbol is an important in-

7 gredient in the definition of Lim f(x). It is gen-
x—a

erally recommended that this rigorous definition
of limit be postponed until at least the second year
in the case of the average student. However, the
fundamental definition of the derivative, based on
either an intuitive or rigorous definition of limit is
essential for an understanding of the derivative.
In order for a student to grasp the idea of average
rate of change, instantaneous rate of change, and
the difference between them he must spend time

f(x+ Ax)—1(x)
AX

approaches 0 for a variety of given functions. Un-
fortunately, poor support from weak algebra causes
many frustrations in pursuing this goal. Consider
this case:

%43
I:etf(x)_zx+1

The first stumbling block is the calculation of
f (x + A x), notation which students find diffi-
cult to understand at first. The next difficulty is
computation with fractions. There is often wide-
spread confusion over the simplification of an ex-
pression like

and its limit as A x

finding

x4 Ax 43 . x4+ 3
2x+Ax)+1 2x+1
AX

Many students simply do not remember how to add
fractions. Others will leave out parentheses, caus-
ing errors in multiplication and signs:

2xXx+1EE+ A4+ —x+302E+AXx)+1)

Ax@CE+AY+1) 2x+ 1)
Results do not come out as expected, leading to
acts of desperation:

FE)=Liméx+_ LAx+3+6x+6AX+6
Ax—=0 Ax(@x+2Ax+1) 2x -+ 1)

The students are much happier when they are
allowed to find derivatives by shortcuts given by
theorems, They master the chain-rule when it is
applied to (f (x))» without too much difficulty.
They put up a fuss, however, when its application
is needed in implicit differentiation. The derivative

of (f(x))» with respect to x is accepted as n(f(x))=1

(%) but students find it hard to understand the

difference between the derivative of y» with respect

to v and that with respect to x. They must be re-

minded several times of the assumption that

y = f(x) and that d y» requires the chain-rule.
dx

To reduce errors in implicit differentiation, it is
beneficial to construct a table as follows. Assume
that y = [{x) and that x1* + y10 — 33yt — 12.8.

Term Derivative with respect to x
x!0  110x°
3xtyt  |3x3 (4y%y") + 9x%yt = 12=3%y%y’ + 9x%yt
i2.8 0

This is helpful since it enables students to focus
on each term separately, combining the results only
after differentiation is completed.

Finding derivatives from given equations is hard
enough; some students become really distressed
when confronted with verbal problems from which
they must determine their own equations. They ap-
preciate step-by-step procedures to follow. For in-
stance in solving a typical related rate problem,
students should be encouraged to

1. Draw a diagram;

2. Write a table of information, symbolizing
what is known and what is to be found;

3. Write an equation relating to the variables
of the problem;

4. Differentiate according to the question posed
in the table of information;

5. Substitute given values.

These steps may be illustrated by the solution
of the following typical related rate problem.

A ladder 25 ft. long is leaning against a vertical
wall. If the bottom of the ladder is pulled horizon-
tally away from the wall at 3 ft./sec., how fast is
the top of the ladder sliding down the wall, when
bottom is 15 £, from the wall?!

1) Diagram:

Table of information:

Lett =— number of seconds elapsed
Let y = number of feet from the ground to the
top of the ladder
x = number of feet from the wall to the

bottom of the ladder

dy dax _ .
3) x2+y2—625
d
2 2y — %
4) (22 + y2) g 625
dx dy
g g =0
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5) Since x2 + y? = 625
x? + 225 =625 wheny =15

X = 20
dx
20——dt—+15(3):0
dx 9
dt — 4

To deter students from working mechanically,
one must introduce variety into the problems. For
instance, related rate problems should not always
depend on right triangles; in maximum-minimum
problems, setting the derivative equal to zero
should not always solve the problem. Also students
should check to see if their answers are reasonahle.

Consider the following problem which illustrates
the utility of a diagram and the need for under-
standing concepts rather than working mechani-
cally.

“Find the point on the circle x? 4 y? = 1 which
is nearest to (2,0). The unsuspecting student sets
up this problem by using x as independent variable
and obtains for the square of the distance from
(z,y) to (2,0),

L?=(2—x)? +-1—x2=5—4x.

Differentiating and equating the result to zero, he
obtains the disconcerting expression —4 — (0,” 2

At this point, a graph of x2 - y? = 1 indicates
that (1,0) is the closest point and serves to remind
the problem solver that — 1 « x « 1. Returning
to the expression for the derivative,

dL. = —2
dx —dx
we see that @ <0 for all values of x. Thus L de-

dx
creases as x increases. The minimum value of L
occurs for x = 1.

A rough check by differentiation would prevent
the following typical error in integration. This
error occurs among students working mechani-
cally without thinking of the meaning of the inte-
gral as the limit of a sum.

51 (x2 — x)2dx

—1

Letu = (x2 — x), du = (2x — 1) dx,

t
dx = 5
1 1 u?
- 2 - - =
2x—1§“d“_ 2x —1 3
(x2— 33 — 0 8 8
2x—1)%|., — -~ "9 T 9

Students should be given illustrations and fore-
warned against other careless substitutions such as

Sin—g— for /1 — cos x without regard to appro-
priate sign, and degree measure for radian meas-

ure.
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Texthooks -often fail to emphasize sufficiently
that% Sinx-=cosxand | cos xdx = Sin + C

for radian measure only; other formulas must be
used if x represents degree measure. _

To help students to see vividly the difference
between v — sin x, for x — measure in degrees and
y = sin x, for x = measure in radians, have them
sketch the 2 graphs on the same axes. 3 At first,

. students want to draw the identical graphs for

both.
Computing the area under one. arch of the sine
curve is also instructive. y

ki
Area = 5 Sin x dx = 2. The graph is
a

X
Fi
Using the same units to represent degree measure,
the curve is elongated:

Y
X
__ f180
Area = f Sin x dx —
]
180 ("™ + . 180 ., . 180
—7;—50 WSlnXdX——— - COSX .
360

ko

The latter computation emphasizes the point that
differentiation and integration formulas for trigo-
nometric functions in degree measure and for trigo-
nometric functions in radian measure are different.

Students enjoy L’Hospital’s Rule so much that
they like to use it everywhere. They sometimes for-
get that they have simple methods for finding
such limits as

Lim 7 4 3x or
x—-0 4 —3x

and attempt to differentiate numerator and de-
nominator, contrary to the hypotheses of L'Hospi-
tal’s theorem.

Although students develop a great alffection for .
L’Hospital’s Rule, they seem to see litfle need for

Lim x — Sinx
X3 X

it at first, Isn’t-—%: 1? Some say %— = 0. It is

convenient to have a supply of quick comvincing

illustrations to show how% can arise, and may

represent any number that we choose,

Lim 2x Lim 3x

= 2; — = 3, etc.
x—=0 x x>0 x
Similarly, a variety of possibilities can be shown

for each of the forms

o
m}m—O0,00

If our students mistreat infinite series, we ought
not to be too surprised, but we should be prepared.
The history of the. calculus indicates how natural




such errors are. A few centuries ago, mathemati-
clans were arguing about

S=1—14+1—1+1—1+-=----

Some said S = 0 since (1 — 1) 4+ (1 — 1) + ---
=040+ ---

Others countered with S = 1 since 1 — (1 4+ 1)
—(1+1)—---=1—0—0---

Leibniz seemed to think that, since
S=1-—({l—-1+1—1+)=1—285,

28=1,
and 8 = 14,
Even Euler “held that from 1 — 14 one
1+ 1)2
could conclude that ¥ — 2 + 3 — 4 + 5 - - -
=1.” (4)

The study of calculus should be an exciting ad-
venture. The mathematics is fascinating and has
extensive applications. To maximize success and

minimize errors, however, the instructor should
emphasize the meaning of each concept and require
that students justify the mechanics that they use.
He should encourage students to check to szee if
his answers are reasonable. The patient instructor
who also gives his students a good review of the
necessary algebra and trigonometry will be re-
warded by the accomplishments and appreciation
of his students.
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ABSTRACTION: PROCESS AND PRODUCT

JAMES FEY
University of Maryland

School mathematics curricula, instructional prac-
tices, and student achievement are again the ob-
ject of widespread public attention. Programs that

are second and third generation products of SMSG,

UICSM, UMMaP, and other “New Math” develop-
ment projects are facing criticism for any or all of
the following sins:

—too much emphasis on concepts, too little
practice with skills;

—to much emphasis on theory; too little train-
ing in practical problem solving;

—+too much emphasis on symbolism and deduc-
tive proof, too little attention to number and
space Intuition;

—to00 much emphasis on abstract structures, too
little experience with concrete models of ideas;

—too much emphasis on discovery learning, too
little use of needed drill.

These criticisms strike a respondant chord with
many teachers and students. But in the movement
to less formal, more practical curricula, the impor-
tant payoff from mathematical abstraction is be-
ing lost — victim of guilt by association with genu-
ine excesses in rigor, symbolism, and deduction.
The loss is unfortunate because,

(1) A statement of fact, a process for organiz-
ing information, or a problem solving pro-

cedure is mathematical only if it is abstract.

(2) Teaching students abstract ideas and the
process of making abstractions is an impor-
tant part of school mathematics instruction

— it can be fun and can lead to exciting
problem solving payoff.

In a simple-minded way, abstracting is the proc-
ess of recognizing that two apparently different
situations actually have similar properties. In fact,
the power of a mathematician is the frequency with
which he can say “I’ve seen a problem very much
like this before.” Abstraction occurs when one for-
mulates a definition.

The curves in set . §* are simple and closed.
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Abstraction occurs when one detects a theorem in
geometry.

a? + b2 = ¢2if and only if  C is a right angle.
Abstraction occurs when one solves a “real world”
problem.

Mathematically educated students must have
learned the abstract concepts and structures most
frequently seen to model reality, and they must
have foeility in recognizing the hookups between
ideas and real-life situations often over-run with
perceptual noise, It might be argued that to achieve
this goal teachers need omly to create frequent
word problem experiences and inductive teaching
(pattern searching is abstraction). These pedagogi-
cal strategies are essential. But if the set of mathe-
matical structures studied includes only the real
number system and standard euclidean geometry,
students too often learn structural rules by rote
(particularly in aigebra). New systems which vio-
late the seemingly universal number properties (for
instance, matrix multiplication) are never quite ac-
cepted ag legitimate mathematics.

Example 1. Ask a junior high math class
“What makes the following statement {frue:
T4+ (x+3)=(7+x)+3?" and the response will in-
clude all the new math buzz words from ‘soshative’
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through ‘communitive” — and at least one “if you
add ’em up you get the same answer.” Each of
us has at times felt frustration with the difficult
connection between names and properties or be-
tween properties and proper problem solving strat-
egies,

Why do we bother stressing properties of the
number system? Better understanding, retention,
and transfer are the common answers, Why do stu-
dents have so much trouble keeping the properties
straight? Not because the properties are abstract,
but because they have not been taught in a suffi-
ciently abstract context! One promising antidote
for this difficulty is to present many realizations
of each number system property.

Among plausible, but non-standard, operations
on numbers, one of the most enlightening is ‘av-
eraging’

1. atb
a*b= 5

Begin with a pattern search contest of “guess my
rule,”

12
)
3

grQ#y ?<(3*9)*7
o 3% (9%7)

D * 3 —_— 3
] * 11 = 11
For a real challenge, try to determine whether ordi-
nary * and + distribute over * and what each
would mean in terms of scaling and/or curving
test scores.
a * (b*c) (a‘h) * (a‘c)
a + (b*c) = (a+b) * (a+c)
Other practical and structure revealing opera-
tions you can use include—
Max: a*b =Ilargerofa,b
Min: a*b—=smallerofa,b
lcm: a* b = least common multiple of a, b
To push ecomprehension of the abstract structure
patterns one step farther, try these operations on
pairs of points in a plane—
A * B — midpoint. nf AR
A [ B == third verAmx cIock\;ivise in square ABCD
3

L= UL
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You'll be delighted at the speed with which stu-
dents conjecture non-associativity of “midpoint”,
based on an intuitive isomorphism with averaging.
Furthermore, you'll have students jumping out of
their seats to play ‘guess my rule’ with operations
of their own creation. By seeing examples and
counter-examples of the number system properties,
students will sharpen their insight into application
of those patterns.

Example 2. Ask most laymen to define a straight




line, and you will usually hear “it’s the shortest
distance between two points.” Despite the best
efforts of secondary school geometry instruction,
the respondent will very seldom reply “it’s an un-
defined term.”

Aside from the fact that a line is most certainly
not a distance (number), in our practical life space
today there are few cases in which the shortest
path between two points is a straight line. To un-
derstand this statement, one must move to a more
general or abstract notion of distance.

If S is a set and d is a mapping from SxS to the
real numbers such that for any a, b, ¢ in S

1} d(a, b})>0 {= iff a=Db)

2) d(a,b)} =d(b,a)

3) d(a,e)<< d(a, b) + d(b, ¢)
then (8,d} is called a metric space.

The variety of measurement procedures that fit
this pattern is astounding. For instance, a suburb-
anite who commutes to work might measure “dis-
tance” by time or mileage or cost. An airline trav-
eller would probably consider time or cost — sel-
dom mileage. The telephone company measures dis-
tance and then rates by a combination of euclidian
distance and facilities for carrying calls (a New
York to Dallas call might actually be routed
through Los Angeles). For several of these non-
standard metrics, one or more of the conventional
metric space properties fail to hold. This incon-
gruity can lead to intriguing and informative class-
room explorations.

For openers, try the familiar taxicab metric on a
city street grid:

This rule obeys all desirable metric properties.
(Note, however that d(A, D} = d(A, B) +
d(B, I A, B, D collinear.) But what if alter-
nate streets are one way?

For sheer simplicity, and not total impracticality,
investigate the “telephone connection” metric with
rule:

0if A=B

d(A, B) = J(10 if AZB

It arises from the fact that 10 digits will dial any
phone in the U.S.; it takes no time to talk to your-
self. Most familiar metric rules hold.

Example 3. One of the main “new math” rec-
ommendations for change in school algebra instruc-
tion was unification of manipulative techniques
around fundamental group and field properties.
If students acquire rudimentary understanding of
elementary group theory, the algebra of solving
equations will fit together beautifully. '

In any group (G, *) if al represents the inverse
ofa,thena*x=biffx —=al*h.

This basic pattern goes to work as follows
1) atx=biffx=—a+b>b

9) a'x—biffx — -—3— ‘b

3) To solve ax + b = ¢ combine (1) and (2).
4} For vectors in a plane
(@b) + 7= (cd) it T=(—a,~-b) + (c,d)
5) It f(x) = ox + 32, then 1 (x) :g— (x—32)
To solve f(x) = 68, look at f! (68).

. (3x+2y=1
6) To solve the linear system ) 7z + 5y =2

Look at matrices M =— |: 3 2]
75

5 —2 ]
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Conclusion—The process and the products of ab-
straction are essential aspects of mathematical
thought. The few illustrations given above demon-
strate that abstraction need not be synonymous
with sterile formalism. The search for abstract
ideas opens up pedagogically exciting worlds of
creative exploration, at the same time casting re-
vealing light on the structure of specific concrete
systems of number and space.

and M =
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