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There has been much conversation lately about
“doing away with ‘new’ math.” Is it “new” math?
What we are really interested in is the “new ap-
proach” to mathematics,

Emphasis is placed on understanding as opposed
to memorizing a rule and working hundreds of
problems involving the rule, Memorization has its
place in the new approach and follows logically
as the concept is internalized. For example, there
is a visualization of six sets of eight objects when
6 x 8 is approached.

The four step process — concrete, semi-concrete,
semi-abstract, and abstract — is utilized in pre-
senting concepts. The student is advanced from
one step to another as quickly as he indicates he is
ready. As mathematics teachers, we must diagnose
student needs and guide the student as he prog-
resses through a meaningful program.

A real “plus” for the new approach is its mo-
tivating force. When concepts are internalized,
practice through meaningful activities and games
gets the job done and in a way that has caused
many students to verbalize, “I like math,” “math
is fun,” or “math time again, yeal!”

Our opportunity today is to look critically at
what we are doing and determine its value in re-
lation to accomplishing our goal of meaningful
mathematics for each student. In so doing, we will
perhaps alter some approaches, but we will con-
tinue to present concepts in the “new approach”

way. We know its value. Let's provide students

the best!

The annual meeting of the National Council of
Teachers of Mathematics is in Atlantic City April
17-20. It will be a great meeting! I hope you are
planning to attend. I will be serving as your dele-
gate to the national math assembly on the 16th.
Please let me hear from you if you have reso-
lutions to submit.

CORRECTION

In the January, 1974, issue of Texas Math-
ematics Teacher, in the article entitled “A
Payments Paradox,” page 13, line 11 of col-
ummn 1 should have read “Job B” instead of
“Job A.”

Spring is the time for many local councils to
be conducting math meetings. Watch for infor-
mation about workshops and meetings in your
area. Attend! You'll be glad you did. Your coun-
cil is encouraged to provide sessions for teachers
at all levels. Call on Texas Council to help you.
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ATTENTION:
NUMBER ONE ON THE METRIC HIT PARADE

What can a music teacher do when his school
decides to “go metric” for a month? This was the
question confronting Charles Rinehart at the
Campus School in Oswego, New York. His re-
sponse was to use rhyme and rhythm to teach the
new metric vocabulary. His song, “Halve Your
Meter,” has become an instant hit due to its
catchy melody and painless introduction to the
metric system. From the standpoint of a music
teacher looking at the metric system, Charles says,
“How pleasant it ig to have a spoonful of sugar
to help the metric go down.”

The words and music of the tune appear in the
May, 1974, issue of SCHOOL SCIENCE AND
MATHEMATICS. If you would like a reprint of
the article, which includes the words and music
to the tune, simply send a stamped, self-addressed
envelope to:

School Science and Mathematics Association
P. O. Box 1614

Indiana University of Pennsylvania
Indiana, Pennsylvania 15701



THE CASE FOR TRANSFORMATIONS IN HIGH
SCHOOL GEOMETRY

by Zalman Usiskin
University of Chicago

Five years ago, few teachers had heard about
transformations except in college linear algebra
courses, and certainly not too many teachers were
thinking about them in high school geometry, even
though there were available materials.2 Yet today,
in an increasing number of texis at elementary,
junior high, and high school levels, for both slow
and fast learners, transformations are mentioned,
given lip-service, given sections, or studied in de-
tail. I have been one of those people who have
encouraged the use of transformations both in
algebra and in geometry. The purpose of this art-
icle is to give one view of the case for transforma-
tions. After a brief introduction to transformations,
5 reasons are given for their inclusion in school
curricula.

What are transformations?

A transformation is a correspondence (often
restricted to be 1-1} between the points of one
set and the points of a second set. Below is pic-
tured one example of such a correspondence. Point
A corresponds to E, B corresponds to ¥, C cor-
responds to 3, and D corresponds to H. All other
points of ABCD correspond to points of EFGH.
What do we call this correspondence? It looks like
we could have turned ABCD 80° around the point
P (stick a needle into P and physically turn the
page to verify) and it would fall upon EFGH. So
we call this correspondence a rotation. In fact,
this particular rotation has center P and magni-
tude 80°. We call EFGH the image of ABCD
under this rotation. ABCD is the preimage. We
say that the rotation maps ABCD to EFGH.

e 25 7
&

'

points — not  just
those on ABCD — have images. And so we speak
of transformations of the plane even though we
may focus only on a few points and their images.

Notice that the distance between two preimages
(B and D, for example) is equal to the distance
between their images (F and H). This is a char-
acteristic of all rotations — they preserve distance.
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Not all transformations preserve distance. Below
is one which does not—a size transformaiion
(also called a dilatation).

In the size transformation, a center and magni-
tude are chosen. Here we have picked O as the
center and 214 as magnitude. For each point A
on the preimage, we find image A’ by choosing
the point on QA which is 215 times as far from
O as A is. That is, OA’ = 214 - QA. This process
is repeated with as many points as are needed
to determine the image.

The preimage and image probably look similar to
the reader. However, the standard definition of
“similar” does not cover such complicated figures.
Yet many applications of similarity (patterns, scale
models and drawings, photographs, magnifying
figures) require a general notion of similarity. This
gives the first major building block for the case
for transformations.

1. Transformations enable one to deal
with a much greater variety of figures
in geometry.

Here are possible definitions of congruence and
similarity as seen from a transformation point of
view. Notice that they apply to all figures, not
merely segments or angles or triangles.

Definition: Two figures o and B are congruent
if and only if there is a distance-pre-
serving transformation which maps
« onto 8.

Definition: Two figures ¢ and 8 are similar if and
only if there is a distance-multiplying
transformation which maps « onto 8.

By “distance-multiplying” we mean that if A
and B are any two preimages and A’ and B’ their

AB
the ratio of similitude. In the above example, this

images, then is a constant. This constant is

. constant ratio is 214. That is, the size transfor-

mation in some sense multiplies distances by 214.




With these definitions, it is natural to ask:
“When are two triangles congruent?’ “When are
two polygons similar?” From these questions, the
standard content of geometry can be developed.
Under traditional courses, it is doubtful that stu-
dents think of congruence or similarity as being
in any way natural. This is a second major joint.

2, Transformations bring geometry much
closer to the intuition of the child.

The early geometry experiences of the child in
grades K-8 lead the child to understand that con-
gruence and similarity depend upon size and shape.
From this intuition, the child ought to realize that
assembly-line production depends upon the build-
ing of congruent parts, that xerox duplication gives
us congruent pages, that he or she is congruent to
his image in a mirror (at a given point in time),
that what you see through a telescope or micro-
scope is similar to what is behind the lens, and
80 on.

However, the standard high school course in
geometry divorces these concepts from the intui-
tion of the child by {1} ignoring the very exist-
ence of the world it was supposed to model and
(2) setting up different definitions of congruence
and similarity for each type of figure even though
the underlying intuition is the same.

This idea can be illustrated in another way.
Below is a figure found in geometry texts. Some
information is given, and let us suppose that the
child is asked to deduce that/ 3 2/ 4.
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How does the child know that/_ 3 22 /_ 4. Cer-
tainly not because he proves it. The proof does not
convince most children. He knows that/ 32/ 4
because in some way the figure is balanced. For
this reason, the child would balk at being asked
to prove /. 2 ¥ L 3, The figures in geometry texts
are almost always symmetric. Symmetry is an-
other important concept which is most easily de-
fined in terms of transformations.

Definition: A figure i1s symmetric if there is a
non-trivial* distance-preserving trans-
formation which maps the figure onto
itself.

(*The transformation which maps each point onto
itself is distance-preserving, (Think of a rotation
of 0°.) Tf this transformation were not excluded
from the definition as being trivial, then every
figure would be symmetric.) The figure used
above is reflection-symmetric. There is a reflection
over the disector of /£ CAD which maps the figure

onto itself. Notice that this reflection maps/_ 3
onto /. 4, For this reason, they are congruent.
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Because transformations bring geometry closer
to the child’s experience, they can make the de-
velopment easier. (This i1s not the case with every
development using transformations; some writers
insist on making simple mathematics as difficult
to learn as they can.) Furthermore, the geometry
can be made much more visual and physical. This
makes the use of transformations particularly ap-
propriate for students who do not easily grasp
proo{ concepts. They can at least understand the
material about which they are being asked to make
deductions. This is the third major reason for
transformations.

3. Transformations make gecmetry more
accessible to the slower student.

It is notable that UICSM decided to use trans-
formations almost exclusively in designing a course
in geometry for slow 8th graders.s It is also notable
that here is a case of “new math” being easier —
it is taught in elementary schools in Europe — and
this goes against the experiences of many of the
new curricular materials of the 60’s, so that teach-
ers don’t believe it until they teach transforma-
tions.

Mathematics does not have to be hard to be good.

The generality with which transformations can
be used in geometry makes them much more ap-
plicable in later courses. Puf another way, there
aren’t too many triangles in the second-year al-
gebra course, so the standard geometry course
cannot easily be applied here. Here are just a few
of the applications of transformations which are
possible in later high school courses.4

a, The congruence of parabolas y=—x2 and

y=(x—h)? + kand y = — %% for exam-
ple.

b. Reflections over the line y=x for inverse
functions.

Symmetry of the conics.

Congruence of the graphs of y=—sinx and

y = cosx, application to phase shift.

e. The similarity of all parabolas (take a mag-
nifying glass to a thin parabola and it looks
wider).

f. Rotating 90° to get slopes of perpendicular
lines.

g. Polar coordinates as arising out of a rotation

and size transformation.
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h. Connections with real number and complex
number addition and multiplication.

i. Periodicity of functions as an instance of
translation symmetry.

Other applications are related either to matrices
or to groups, which arise naturally if one has
transformations.

These connections with what used to be ex-
clusively college-level mathematics has forced
every curriculum project in the last five years for
good students to introduce transformations early
in their development.5

4. Transformations provide assistance
(and a strong weapon) for future
work in mathematics.

It is not geomefry which has no applications in
later mathematics, it is the stendard course in
geometry which has so few applications.

Indeed, transformations are examples of func-
tions and hence useful in preparing to study anal-
ysis, Knowledge of transformations is necessary in
studying groups. The intimate association between
transformations and matrices is fundamental in
linear algebra. And every geometer must know
about transformations because some theorems have
no other simple proofs — except those which use
transformations.

There are other concepts which are useful in
later mathematics, and coordinates and vectors
have been posed as possible tools with which to
approach geometry. Thus far, all developments
using these ideas available in the U.S. seem to
require too many algebra skills for the average
student. (The traditional unifying concept, proof,
is, of course, not geometric but a logical concept.)

And these methods do not enable one to easily ap-
proach the fundamental concepts of congruence,
symmetry, and similarity and use these ideas to
deduce properties of figures. We thus come to the
last reason given here for using transformations
in geometry.

5, Transformations give a unifying con-
cept to the geometry course which is
geometric in nature.

The reader may now wonder if there are any
arguments against the use of transformations. The
only one I have heard is that teachers are not
ready to teach transformations. This has not been
a great problem in my geographic area nor in some
other areas of the United States. If material is
really at the level of the average student, then
it can be understood by teachers with no special
training. Experience has shown that teachers go
through materials more slowly in their first year
of teaching transformations than in their second,
and this would be expected with any new ma-
terials. In short, there is no case against the use
of transformations in geometry — their time. has
come and they are here to stay.

tAdapted from two talks given at the CAMT, Austin,
Texas, November 2, 1973,

27 Usiskin, “Transformations in High School Geomeiry
Before 1970,” to appear in The Mathematics Teacher
sometime in 1974.

SUICSM, Motion Geometry, Harper and Row, 1969.
4All of these applications can be found in some experi-
mental 11th grade materials, Intermediate Mathematics,
available from this writer.

5For example, the Secondary School Mathematics Cur-
riculum Improvement Study (SSMCIS), centered at
Columbia University, and the Comprehensive School
%\}/Ilgth?matics Project (CSMP), centered in Carbondale,

inois.

ON TEACHING PROOF AT THE COLLEGE LEVEL

by Marvin L. Bittinger
Indiana University-Purdue University at Indianapolis

Consider the following two learning theories
regarding the teaching of proof at the college
level:

Theory 1. Study axiomatic systems, and let the

proof strategies evolve from this
study.

Theory 2. Study proof strategies first. Then
use them to more effectively study
and do proofs related to axiomatic
systems.

Which is best? On thinking about this, one quick-
ly realizes that the arguments are analogous fo
“Which comes first, the chickén or the egg?”’
Theory 1 has probably been used most at the
college level, The argument presented in the rest
of the paper will be for the use of Theory 2 and
how this can be accomplished.
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A study by Morgan [3] provides strong argu-
ments against Theory 1, under the assumption
that, in fact, Theory 1 is what is used most in
teaching proof at the college level. Morgan found
that of students who had 304 hours of mathe-
matics at the college level only 80% knew the
starting assumption for a direct proof [To prove
P—Q, assume P (and deduce Q)]; only 37%
knew the starting assumption for a proof by con-
trapositive [To prove P — @, prove ~Q — ~P, by
assuming ~Q (and proving ~P)]; and only 33%
knew the starting assumption for a proof by con-
tradiction [To prove P — Q, assume its negation
PA~Q, (and derive a contradiction RA~R)]. No
wonder students cannot create proofs by contra-
diction — they do not even know how to get
started! The findings of this study raise serious
questions regarding the preparation of an under-



graduate mathematics major to do graduate work.
Questions also arise about the preparation of sec-
ondary mathematics teachers regarding the teach-
ing of proof,

It is my conclusion that we ought to be using
Theory 2 and the remainder of the article is
devoted to how to carry this out. Theory 2, in
effect, infers that a certain learning set be im-
planted in the minds of students. HEach time a
student encounters a sentence to be proved he
considers a set sequence of steps. The learning
set (or strategy) in analogous to a widely ac-
cepted strategy for solving applied problems in
algebra.

Algebra Problem: The length of a rectangle is 3
ft. more than the width and the area is 54 ft2. Find
its dimensions.

STRATEGY:
(1) Translate to Mathematical Language: In this
example, this means, translate to an equation:
w(w + 3) =54, or
w2 4 3w —54=10

(2) Examine the Equation, Select a Method of
Solution From:

a. factoring

b. completing the square

¢. using the quadratic formula

This strategy has two clear implications in re-
gards to the skills students should have obtained
prior to a study of solutions of applied problems.
(1) They need to practice the skill of translating
problems to equations. This can be accomplished
most effectively if done with no thought at the
time of actually solving the problem, (2) Students
must have also obtained the skill at using any
of the methods of solving the translated equation
in this case of solving quadratic equations.

An analogous example yields the learning strat-
egy (Theory 2) for creating proofs.

Proof Sentence: The square of every even in-
teger is an even integer.

STRATEGY:
(1) Translate to Mathematical Language: This
can be interpreted to mean, translate to logical
symbolism:

¥x, x is even — x* is even (Quantifier could be
written)
(2) Examine the Translated Sentence, Select u
Mode of Proof From:

a. direct proof

b. proof by contrapositive
¢. proof by contradiction

As with the applied problem strategy, this proof
strategy has two clear implications in regards to
the skills students should have obtained prior to
attempting proofs of sentences. (1) Students need
practice at translating sentences to logical symbo-
Yiem. Often, as in the case of a conditional sentence,
there are many ways of expressing a sentence in

written manner, but which have the saimne trans-
lation to logical symbolism. For example, all of the
following have the same meaning:
¥ X, x 18 even — x° is even
The square of every even integer is even.
X is even implies x? is even
x i8 even only if x? is even
X is even is a sufficient condition for x2 to be
even
x? is even is a necessary condition for x to be
even

{2) Students must have practice at using the
possible modes of proof for a given sentence.
Clearly, even if students have the previous skills
it still does guarantee that they will be able to
create a proof of a given sentence, but at least
they are much closer to success than if they did
not practice this strategy.

For the remainder of this arficle we will ex-
pand upon this strategy with various types of
sentences.

A, Conditional. The following are several ways
in which conditional sentences are expressed fol-
lowed by the way they are expressed in logical
symbolism.

If P, then Q

P implies Q

Qift P

Ponly if Q

P is a sufficient condition for Q

Q is a necessary condition for P

P-Q

The following are possible modes of proof for
conditionals. (1) Rule of Conditional Proof. As-
sume P, deduce Q. The motivation for this mode
of proof follows from the truth table for P — Q.

P Q P—-Q
T T T
T F F
F T P
F F T

When the antecedent P is false the conditional
P — Q is true from the truth table. So, the only
case to check is when P is true. Making P an
axiom temporarily and using all previous axioms
and theorems we try to deduce Q. For example,

Prove: xis even — x2 is even.

Proof. Assume x is even. Then x= 2k, for
some integer k.
Then x* = (2k)* = 2(2k?), s0 % is even.
Such seemingly trivial examples help the student
to practice the proposed proof strategy in a famil-
iar axiomatic system, so the proof strategy be-
comes the new learning, rather than the axio-
matic system.

{2) Proof by Contrapositive. Using truth tables
one can verify that a conditional sentence P — @
is equivalent to its contrapositive ~Q — ~P. This
yields another mode of proof for P — Q:

Assume ~Q, deduce ~P. For example,



Prove: x* is even — x is even
Proof. Write the conirapositive: x is odd
-> x2is odd
Assume x is odd. Then x=2k + 1, for some
integer k.
Then 2= (2k + 1)2=2(2k? + 2k) + 1,50
x? is odd.

When a new equation solving technique is intro-
duced students need to practice it. Similarly, when
a new proof technique is introduced students need
to practice it. Sentences which lend themselves to
proof by contrapositive should be used for such
practice. The following are some further examples:

a. X2 is odd — x is odd

b. If two lines are cut by a transversal so that
alternate interior angles are congruent, then
the lines are parallel.

(3) Proof by Contradiction. This is a mode of
proof for any sentence, in particular for condi-
tionals. We will treat this in detail later.

B. Biconditional. The biconditional sentence
P — Q occurs in the following forms.

P is equivalent to Q

P if and only if Q

Piff Q

P is a necessary and sufficient condition for Q

The following are possible modes of proof for
biconditionals. (1) Prove (P—>Q) & (Q—=P).
This is actually the definition of a biconditional
sentence. There are two parts to such a proof.

(2) Prove (P—Q) & (~P— ~Q). This mode of
proof is accomplished by proving one conditional
and the contrapositive of the other.
For example, to prove

X 15 even —X? is even
one might prove

a, x is even —x* is even

b. xis 0odd —»x%2 is odd

Again, trivial examples allow greater emphasis

on the proof strategy.

(3) Iff-String. This mode of proof of a condi-
tinnal sentence P — Q is illustrated below.

Pe 5,
S, 8,

S, <Q .
That is, to prove P — Q we produce a string of
equivalent sentences leading from P to Q. This
could also be accomplished in another way:

P-Q
Q-85
Sn‘-aP
That is, prove P - Q,Q > 8, ... 8, - Q, a

string of conditionals producing a cyclic argument
from P to @ and back to P.
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C. Universally Quantified Sentences. The uin-

versally quantified sentence
For every x, P(x), or ¥x, P(x)

is proved by showing that for every x in a specified
universal set, that P(x) is true. For finite sets this
is just a matter of substitution, but for infinite
sets proofs usually rely on universally quantified
axioms. For example,

Prove: ¥x,1 < x —» 1< x*
Proof. Let x be fixed but arbitrary. Assume
1 < x.Thenx > 0,80 1-x < %X, or X < X
A possible reaction to this is “You only proved
it for one x, not for all.” One needs to point out
that if it were possible to repeat the proof for
every x in the universal set each proof would be

the same.

D. Existentially Quantified Sentences. The ex-
istentially quantified sentence
There exists an x such that P(x), or dx, P(x)
is proved by showing that there exists an x in a
specified universal set for which P(x) is frue.
Some examples are quite trivial, such as
Hx, x = 0, here there is only one x
Hx, cos x =1, here there are many x’s
Using proof by contradiction one can actually
prove the existence of an object possessing a cer-
tain property without directly displaying that
object.

E. Proof by Cases. To prove a sentence of the
type
(PorQ) —8
it can be shown by truth tables that it is sufficient
to prove
(P—-S) & Q-8
An example might to to prove {a==0 or b =0)
—> ab =0.
Situations can arise where a sentence P — Q,
lacking any word “or” can be proved if first proves
an intermediary “or” sentence. For example,

Prove: x is an integer — x* + X is even.

Proof. First of all, x is an integer — x is even
or x is odd. Now we have an “or” sentence
and we can use proof by cases.

Case 1. Prove. x 1s even — x* + X is even.
Case 2. Prove. x is odd — x* + x is odd.

We omit these proofs.

The real art in producing a successful proof by
cases is selecting the appropriate cases, as in the
following absolute value proofs:

|x| >0, [xyl=1x||¥]|, [x2| = x|
F. Mathematical Induction. One can prove

For every natural number n, P(n), or ¥n, P(n)
if one can
a. Basis Step. Prove P(1)
b. Induction Step. Prove. vk, P(k) —
Pk+1)

RIEE




There are some standard motivations for this
procedure which will be omitted here. There are
some points to make to aid the teaching of mathe-
matical induction. The first is to give many kinds
of examples, not just examples using summation
of series problems. The folowing are some possibili-
ties:

o n(n41) (2n+1)
a. For everyn, = j2 = 5
=1
b. For every n, | sin nx| < n | sin x |
c¢. For every n, (2n)! < 22(n!)®
d. Foreverynsets,A,..., A

n n
c(lJ Ap= ca,,

where CA is the complement of A.

In this way students become aware that mathe-
matical induction is a very universal and useful
method of proof.

Another helpful point to make in regards to
teaching mathematical induction is to make use of
recursive definitions like the following.

Definition of exponents. For an a and any integer
k>1,a'=a,a"! ==agkg
Definition of sigma noiation. For any number a,

n*

e 0wy By, Axpy
k+1 k
(Za,) =a; (2a;) =(2a,) + ax

Let us do a proof by mathematical induction to
point out other helpful procedures. The proof is of
(a) previously stated. It is helpful to first write
down P(n), P(1), P(k), and P(k-1) so that one
has right in front of him what has to be proved.

I 1) (2n+1
P(n): x j2=n(n+ )6( n+-1)

i=1
P(1): 1* = .1(1+1)6(2‘1+1)

k k(k+1) (2k4+1
P(k):zjﬁ:(+6( +1)

j=1
&+
P(kt1): 54— (k+1) (k-é—2) (2k+3)
i=1
Usually the proof of the basis step is just a
matter of substitution, but the induction step
requires more creativity. Students are usually
taught, when proving trigonometric identies to
start with one side and derive the other. Such a
method along with use of recursive definitions can
make the proof of the induction step almost a
routine matter in some cases:
k+1 k
732 =(27?) 4 (k+1)2, recursive definition
j=1 j=1

:k(k+1)6(2k+1)+ (k+1)2, by P(k)

_ (k+1) (k+2) (2k+3)
- 6

G. Proof by Contradiction. To prove a sen-
tence P one assumes its negation ~P, and deduces
the truth and falsity of any sentence S; that is,
one proves S & ~8. In particular, to prove P — Q,
one assumes P&~Q. This points out another im-
portant skill the student must have; that is, he
must be able to form negations of sentences.

For example,
~(P - Q) « (P& ~Q}
~¥x, P(x) & Hx, ~P(x)
~Hdx, P(x) e ¥x, ~ P(x)
The omission of quantifiers ean sometimes lead

to fallacious proofs such as the following. Can you
find the error?

Prove. If x is rational and y is irrational,
then x+y is irrational.

Proof. Assume the nepation: x is rational & y
is irrational & x + y 1s rational.

Since 0 is a rational, it can be substituted for
x and

x + y is rational, or

0 - vy is rational, or
y is rational, which is a contra-

diction
Now let us give a valid proof by involving the
gquantifiers.

Prove. For every x and for every y, if x is
rational & y is irrational, then x 4 ¥y is irrational.

Proof. Assume the negation: There exists an
x and there exists a y such that x is rational, y is
irrational, and x + y is rational.

Then x = %, for some integers a and b, and
X + Y =—g-, for some integers ¢ and d. Then
— _g._ ¢ a _ cbh—da
y=E+9 —y=g-F="g

Therefore v is rational and we have a contradic-
tion. It was commented earlier that proof by con-
tradiction can actually prove the existence of an
object possessing a certain property without ac-
tually displaying it. The following is such a proof.

Prove: "There exists an irrational number a and
an irratioral number b such that a® is rational.

Proof. Assume the negation: For every irra-
" tional numher a and every irrational number
b, ab is irratioral. We use the fact that /2

V2

is irrational. Then we know that y2  is
irrational by the negation.
./E} %

Then we also know that |/2 is irra-

tional

V2| v2
But |/2 = (2)? = 2, and we have
a contradiction.



Note carefully that this proof did not actually dis-
play an irrational number a and an irrational
number b such that ab is rational, though it did
prove that such numbers exist.

SUMMARY

A new teaching strategy is proposed (along with
some hints) for creating proofs:

(1) Translate to logical symbolism

(2) Examine the translated sentence, select a
mode of proof.

Some additional hints are as follows.

(3) After a reasonable effort with one mode of
proof, try another. ,

(4) Examine analogous proofs for hints.

(5) Use definitions and previous theorems.

(6) Realize that trial and error are very much
a part of proof creativity.
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 FINGERS AND
MULTIPLICATIONS

by Ali R. Amir-Moéz
Texas Tech University

Have you ever used your fingers for multipli-
cation? Here we shall explain if.

One has to know the multiplication table up
to 5. Then one can use his fingers. For example,

for multiplying 7 by 8, as 7 is 2 units larger than
5, we bend 2 fingers of one hand (Fig. 1). As 8
is 3 larger than 5, we bend 3 fingers of the other
hand. Thus we have 5 bent fingers and we con-
sider 50. In one hand there are 3 fingers which
haven’t been bent and in the other one we have
2 unbent fingers. We multiply 3 by 2 and we get
6. Consequently, we get 7 X 8=150 + 6 = 56.
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One may try other examples in order to veri-
fy the technique.
Proof: Let a and b be the two numbers. Suppose
: a=a—b5 b=b—5
and
a”=10 —a, b”=—10 —bh.

Then we observe that

10 (@’ + ) 4 a”b” = ab.

DEDOS Y
MULTIPLICACIONES

Por: Ali R. Amir-Moéz
Texas Tech University

;H4 empleado alguna vez los dedos para multi-
plicar? Ahora vamos a ver cémo hacerlo.

Se debe saber solamente la tabla de multipli-
cacién hasta 5. Ya que se puede usar-los dedos.
Por ejemplo, para multiplicar 7 por 8, como 7 es
2 mas grande que 5, doblamos dos dedos de una
mano (Fig. 1). Como 8 es 3 mds grande 5, dobla-
mos 3 dedos de la ortra mano. Tenemos por lo
tanto 5 dedos doblados y consideramos 50. Tene-
mos 3 dedos sin doblar en una mano y 2 dedos en
la otra. Multiplicamos 3 por 2 para obtener 6. Por
fin, obtenemos 7 X 8 = 50 } 6 = 56,

Se pueden tratar otros ejemplos para probar el
método.
Verificacién: Sea a v b los dos niimeros. Suponga-
mos
a=—a—5b=b-—5

y

a’ =10 —a, b”" =10 —h.
Entonces observamos que

10 (a" 4 b"} + a”b” —=ab.
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From Ideas to Algebra Modules:
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Junior High
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Date:— . Scheol: School Address: -

Position: ] teacher, (] depariment head, [J supervisor, [] student,* [J other {specify)

Level: (7] elementary, [ junior high school, [J high seheol, [7 junior college, (3 college, [] other (specify)
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Texas Council of Teachers of Mathematics O Rengwal membership | 3 ()
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Arithmetic Teacher and 25¢ for a subseription to the Newsleiter. 1ife membership and institutional subscrip-
tion informalion available on request from the Washington office.
* 1 certily that [ have never laught professionally Enclose One Check

fStudent signature) for Total Amount Due s

Fill out, and mail to Dr. Floyd Ves:, Mathematics Department, North
Texas State University, Denton, Texas 76203.

NOWIEI

|

umosg wertm T

aal(] #obseiq ‘g 00|
|0OY>G HEIH UDS{IAN MOIPOOAA
YIHOVAL SOILVWIHLYW S¥X3l

sajEWBYeW 10 SdayIeal
40 [1DUNOD SEX3L

FiZ6L SYX3IL 'Sv1vd

4041P3

pled
ebeysogd g N

SRXE | ‘SE”EG
NOILYZINY 24O
LIHOUd"NON

b6B#  HMiag




