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PRESIDENT'S MESSAGE

Shirley Ray

How great it is to be a part of the Texas Coun-
cil of Teachers of Mathematics! This organization
has made tremendous strides in recent years. The
new journal provides many useful ideas through
its varied and excellent articles. Many outstanding
people in the field of mathematics have contributed
much time to share suggestions in order to help
teachers as they try to meet the needs of each
of their students.

Chuck Carson has been an outstanding presi-
dent and will continue to be a valuable resource
person, as well as an exzecutive board member in
the role of past president. All of the officers have
taken on their tasks with enthusiasm: The officers
of the organization who are continuing to serve for
another year are Thomas Hall and Crawford John-
son as vice-presidents, and Floyd Vest as treasurer.
J. William Brown will also continue to serve as
our editor. Those new to our executive board are
Sister Jane Myer, who will serve as secretary; Bill
Stanford, who will ge our Parliamentarian; and
Madge Simon, who will be N.C.T.M. representa-
tive for the next two years. Together we pledge
our support to each of you.

The Texas Council of Teachers of Mathematics
is a service organization to you and its members.
We urge local councils to hold workshops for
teachers and will assist you in their organization
and in providing speakers. Several workshops are
held throughout the state annually and are among
the most exciting things that have been done in
the past several years. Teachers have been thrilled
to spend a Saturday morning not only learning
more about mathematics, but also leaving the work-
shop with arm loads of aids to help them in their
teaching. If you are interested in holding such a
meeting, work with your local council and contact
us if we can be of service to you in helping to plan
and co-sponsor such a workshop.

The annual meeting of the Texas Council of
Teachers of Mathematics was held February 16 in
Austin. The membership voted to raise the dues
from $2.00 a year to $3.00 a year. As you know,
the journal that you have been receiving was
started over a year ago. Funds for its production
have been made available through advertising. Ad-
ditional funds have been provided through math
workshops due to the generosity and contributions
of the school districts where the workshops were
‘held. The cost of the journal is not covered for the
year 1973-74. Although we usually receive adver-
tising from various book companies, TCTM needs
to have complete assurance that the expenses of
printing and distributing the journal are covered;
therefore, the membership voted the increased dues.
Let me urge you at this time to contribute any

articles that you have which would be of interest
to other mathematics teachers. We are always
looking for materials that will help our teachers do
a better job. Please send your items to our editor,
Mr. Brown, in Dallas.

The calendar of mathematics events for the
coming months is both exciting and challenging and
will provide many opportunities for our own per-
sonal growth.

Held in April, of course, was the 51st annual
meeting of the National Council of Teachers of
Mathematics. Hope all of you were in Houston
for this very fine meeting.

August 15-17 is the Fort Worth NCTM meet-
ing. Perhaps, many of you will have opportunity to
go to this as a part of your preschool inservice
work. Plans are now in progress for a mathematics
meeting to be held this fall either in Austin or
Houston. More details will be available at a later
time. So you see there are some very fine meei-
ings ahead of us, and we look forward to seeing
you there.

Conference for the Advancement of Mathe-
matics Teaching: November 1-3, 1973, Stephen F.
Austin and Driskill Hotels, Austin, Texas. Pre-
registration will be $5; on site, $6. Plan now to at-
tend.

Let me urge you to correspond with me or any
of the executive board if you have suggestions
which will help us to have a better organization.
The organization is you; and, if you help us, to-
gether we can strengthen the mathematics pro-
grams throughout Texas. As your executive com-
mittee, our desire is to be of service to you. I look
forward to these two years as we work together
and plan together for the boys and girls of Texas.



A NOTE ON LIMITS OF SEQUENCES GENERATED BY
QUOTIENTS OF POLYNOMIALS

Dr. W. D. Ciark
Stephen F. Austin State University
Nacogdoches, Texas

In an attempt to evaluate the limits of se-
quences whose general term, ay, is the quotient of
polynomials of the symbol n, one basic technique
is employed. The technique used is to divide the
numerator and denominator by the largest power
of n common to both and then evaluating the re-
sult using previously established basic theorems.
The problem here is that sequences of this type
are introduced primarily to study the hasic theo-
rems mentioned and although students readily
grasp this technique this author finds that they
invariably fail to realize an important by-product
of this study. Problems of this type may be placed
into three distinct categories. After analyzing these
categories one can immediately evaluate the afore-
mentioned limits on sight which, of course, is a
valuable asset when a limit of this type needs to
be calculated as a prelude to the solution of a
larger problem,

Rather than give a detailed proof of the three
categories they will be illustrated and the details
left to the reader and/or the interested student.
The three categories are:

1. The degree of the numerator being equal to the
degree of the denominator,

2. The degree of the numerator being less than
the degree of the denominator.

3. The degree of the numerator heing greater than
the degree of the denominator.

An example of a Type 1 sequence is that de-
fined by the formula
+ 6n2 + 5

7n3 + 16n2 + 3n + 7
which may be written
=4+ 6/n + 5/n°
7 + 16/n + 3/n% + 7/n3
and it can be shown, by basic theorems referred
to earlier, that this sequence converges to 4/7.
This is merely the quotient of the leading coef-

ficients of the polynomials. In general this is
also true. '

An example of Type 2 is that defined by
3 2

3
a. = 4n
ho'

an

+ 6n© + 5
% + 16n° + 2n° + 3

a, = 4n

n

=4 + 6/n + 5/n3
7n + 16 + 2/n + 3/n°

which can be shown to converge to 0. In general
this also is true. : '
Finally, a Type 3 sequence is given by

an3 + 6nl + 5

7n2_ + 2n + 4

an

4n + 6 + S/n2
7 + 2/n + 4/n*

which can be shown to diverge to infinity. In
general this is true when qualified by the sum-
mary below.

In summary, if a,is the quotient of polynom-
ials in the symbol n then;

1) If the degree of the numerator is equal to
the degree of the denominator then the se-
quence converges to the quotient of the
leading coefficients of the polynominals.

2} If the degree of the numerator is less than
the degree of the denominator then the se-
guence converges to 0.

3) If the degree of the numerator is greater
than the degree of the denominator then
the sequence diverges to * ©° depending up-
on' the algebraic sign of the quotient of the
leading coefficients of the polynomials.

These results are generally left up to the stu-
dent to discover on his own but the author finds
that this is one thing that just is not discovered.
The reader may easily experience this failure to
discover by assigning thirty problems of this type
and have them turned back all worked by the
technique of dividing by the largest common power
of n!

The ability to evaluate the limits on sight is

extremely useful when working with infinite series
and in many other areas of analysis.

An interesting and rather easily obtainable ex-
tension of these ideas, which may be a good Junior
Research project, is the extension to quotients of
polynomials in the symbol x as x approaches
+o0 , —o@ or (. In this same vein it is found that
the extension to generalized polynominals of the
ideas presented here is an interesting project for ac-
celerated high school students.



To paraphrase John Ruskin, low-achievers need three things to be happy
and successful in their work. They must be fit for it. They must not have
too much of it: And they must have a sense of success in it.

Successful learning, especially for low achievers, begins with
self-confidence and a sense of achievement. And that is what SUCCESS
WITH MATHEMATICS brings to your classroom. '

This new program for junior high school mathematics helps you break
the self-fulfilling prophecy of failure. It is filled with stimulating and
enjoyable activities that stimulate student involvement and build
self-confidence. , :

Fach lesson begins with a preliminary stage—an activity or investigation
requiring little or no written work. Emphasis is given to involvement in the
learning process rather than passive observation. In the structuring stage,

under pleasant and relaxed .

conditions, the teacher inter- |
acts with students to ensure I _
conceptual understanding ‘
and skill development. Then

in the final practice stage,

easy-to-solve problems pro-
vide a gentle transition from
verbal to written work.

Each stage is a foundation

for the next. Each develops @
greater self-confidence. Each
contributes satisfying I
achievement.

Special aids include flow-
charted algorithms in the
algorithm appendix, project

cards for extension, separate Alexancre Dumas

duplicator materials for instructional —— -

aids and independent practice.
For more information, write or call your

regional Addison-Wesley office.

SUCCESS WITH

MATHEMATICS
Addison-Wesley Publishing Company 2

Southwestern Region
P.O. Box 47722

Dallas, Texas 75247
(214) 638-3190

A TEACHERS' EDITION




IT ALL ADDS UP

Dr. Wallace Davis

Dean of College of Education
Texas A&I, Corpus Christi

The common thread that unites all of us in
education is our belief in the teachers and their
commitment to the subject area each teaches and
to the awareness of the importance of education.

To the majority of us in education, the educa-
tional system and its ingredients all add up to the
most effective educational program this world has
ever known and I believe that.

We feel an urgency to know, to understand, to
solve, to innovate, to accomplish. We know that
society has identified education as the prime cur-
afor of our chaotic problems. We are caught in a
revolution of rising expectations; and as we exam-
' ine the problems, we see them as massive and di-
verse and increasing and demanding and we in-
crease our efforts.

Mathematics teachers try to do two things at
one time. They try to protect the identity and
image of the subject matter. (1} You are discip-
linarians of your subject matter. You must have a
commiiment. (2) You try to relate that to the stu-
dents who wander into vour classroom.

What, if anything, will provide the point of de-
parture to resolve the differences between reality
and expectations.

Education is a societal institution and as such
its structure resists change. We were created to
protect, contain, perpetuate the structure of our
society and of our system. That particular society
no longer exists. As society has changed, educa-
tion has tried to meet changing needs,

Modern mathematics was math for the masses.
What is mathematical fluency? We should make
the definition a little more realistic. What is it?

Nothing is more unequal than equal education.
All students do not need the same mathematics.

Different students need different mathematics.
Many do not need more than the basic computa-
tional skills. I call that a core fluency of mathe-
matics. :

For others, they need a secondary fluency of
mathematics. They are going to be thinking and
planning and using mathematics as an organizing
force for fields outside of mathematics.

For others, they need a primary fluency be-
canse they have a feeling for and a eommitment to
mathematics. They want their lives to revolve
around the absiractions; they want mathematics to
define for them truth and reality.

Finally we should use modern mathematics as
it was intended to be used when it was young.
Modern mathematics was easily defined as a way
of thinking, a way of seeing.

Seeing is believing. Believing is seeing. If you
believe in understanding and if you believe that
knowing how things function will cause you to re-
tain it, you can see the purpose for modern mathe-
matics,

1t is not too late to save a very grand and glo-
rious innovation. It is our primary task in Amer-
ican society to teach children. We must teach chil-
dren mathematics.

THE VIN’S: ZERO AND ONE

Sister Mary Petronia Van Straten, SSND
Mount Mary College
Milwaukee, Wisconsin

It is quite certain that almost everyone knows
about the VIP’s, but do they know what VIN’s
are? Make an educated guess! You are right. The
VIN’s are VERY IMPORTANT NUMBERS:
namely, zero and one. It is very true that these
numbers play a very important role in mathe-
matics. It is amazing what a substantial bit of
mathematics one would know, if one knew all the
properties and characteristics of these twe num-
bers and knew how to put them to use in par-
ticular situations.

Let us first consider the number zero. Many
students have the misconception that “zero” and
“nothing” may be used interchangeably, and they
try to explain operations involving zero in those
terms. This is a mistake! Though the dictionary
defines nothing as the absence of all magnitude
or quantity and also as zero, mathematically
speaking there is a decided distinction. To illus-

trate the difference a student who has not regis-
tered for a course has absolutely nothing in that
course, but before the student could hope to ob-
tain a grade of zero, he would have to register for
the course. At the elementary level, when one con-
siders the meaning of a digit in a numeral, such as
205, one should say there are no tens or not any
tens, rather than say or permit students fo say
there is nothing in ten’s place.

Zero is a perfectly good number and indeed
special! Actually it is a whole number because it
is the cardinal number of the empty set. Zero is
an integer. When one draws a picture of the num-
ber line, he arbitrarily chooses some reference point,
zero and some convenient unit of length. Then he
uses this unit of length to locate a point that is
one unit to the right of zero. With this point he
associates the integer, -+ 1. Proceeding in this
manner, one locates points corresponding to the



integers: + 2, + 3, + 4, and so on. In a similar
way, one can locate points to the left of zero and
associate with them the integers: —1,— 2, — 3,
and so on. Then one can have all the points on
the line corresponding to the integers. Note that
the number zero itself is neither positive nor nega-
tive. One might say it is a neutral element. Zero
is an even integer. There are a number of ways to
show this, as was pointed out in an article en-
titled, “Zero Is An Even Integer”, written by Betty
Plunkett Lichtenberg and published in the Novem-
ber, 1972 issue of THE ARITHMETIC TEACH-
ER. Zero is a rational number because it can be
expressed as the ratio of two integers: that is, zero
over any non-zero integer. It can be written as
0/5 or 0/13 and the like, thus showing that zero
has an infinite number of names in its rational num-
ber dress. Zero is a real number, since it belongs to
the set of all decimals. Zero is a complex number,
because it can be expressed as a + bi, where a and
b are real numbers and i = = —1. Named in
this way, it would be 0 + 0i.

Let us next consider how zero behaves in the
four basic operations. In addition it plays a very
unique and important role. When zero is added
to any given number or any given number is added
to zero, the given number does not lose its identity.
Symbolically, n + 0 = 0 + n = n for every real
number n. No other real number behaves that
way. For this reason we give zero a very special
title: the additive identity element.

The question might arise as to whether zero
plays the same role in subtraction. However, with-
out much effort, it becomes apparent that it does

not, since 7 — 0 = 7,but 0 — 7 = — 7. In gen-
eral, for every real numbern,n - 0 = nbut 0 —
n = - n. Yet there is something a bit special

here. When any given number is used as the minu-

372 372
205 2
1860

end and zero is the subtrahend, asinn - 0 = n,
then the given number does not lose its identity.
Therefore, mathematically speaking, we would say
that zero is a right identity element but not a left
identity element with respect to subtraction. Note,
however, that zero is not an identity element, be-
cause it does not work on the right and on the
left. Zero plays another role in subtraction. When-
ever the minuend and the subfrahend name the
same number, the difference is zero. In symbols:
n-— n = 0forall n.

How does zero behave in multiplication? If we
restrict ourselves to whole numbers, those num-
bers which tell us how many elements there are
in a set, then it makes good sense to think of mul-
tiplication {except for 0 x n) in terms of repeated

addition. For example, two threes means 3 is
taken as an addend 2 times or in symbols: 2 x 3
=3+4+3=6.5x3=3+3+t3+3+ 3= 15
In a similar manner, five zeros would mean 5 x 0
= 0+ 0+0+0+ 0= 0 But no matter
how many times zero is taken as an addend, the
sum will be zero. In this way, we can show that
any non-zero whole number times zero is equal
to zero. What about 0 x n? To take n zero times
as an addend does not make good sense, but we
can make use of the commutative principle which
holds that n x 0 = 0 x n. Since n x 0 = 0, likewise
0 xn = 0. In general, any whole number {imes
zero or zero times any whole number is equal to
zero. This is especially helpful for children at the
elementary level, for it helps them to learn nine-
teen basic facts in mutiplication all in one stroke.
What a bonus! We have not proved that for every
real number n, n x 0 = 0 x n = 0, but what we
have shown is satisfactory for the elementary level.
Later in mathematics, perhaps in abstract algebra,
students can prove, that given a ring with the
operations of addition and multiplication, whose
additive identity is zero, that for every n belong-
ing to the ring, nx 0= 0 x n = 0. Actually when
students reach that level, they wonder why they
should have to prove so obvious a statement as
nx 0= 0xn = 0. At the clementary level
children often find difficulty in a multiplication
involving zeros, as in 205 x 372. But if they under-
stood the special property of zero shown above,
they should not have any trouble. In finding an-
other name for 205 x 372, it would be helpful for
them to think of 205 as 200 + 5. The zero for
them in ten’s place simplifies the whole process.
All the child need do is to find 5 x 372 and then
200 x 372 and add the two products. A form in
which to record this might be:

272 1860 372
200 74400 205
74400 76260 1860 ——> 5 x 372

74400 ———> 200 x 372
76260

A very useful and much-used theorem which
holds in any algebraic system with no divisors of
zero is this: The product of two numbers is zero
if and only if one or boih of the numbers is zero.
In symbols: ab = O if and only ifta = 0orb = 0.
To cite one of the commonest examples of the use
of this theorem, suppose x* = 4. Thenx*— 4 = 0
or (x + 2) (x — 2) = 0. In this latter form the
two numbers named have a product of zero. There-
fore (x + 2) must be zero or (x — 2) must be
zero. Consequently x is equal to 2 or x is equal
toa ~2.

Lastly what about the role of zero in division?
This always seems to be the trouble spot for chil-
dren and also for prospective elementary teachers.
Three cases must be considered: zero as the divi-



dend, zero as both dividend and divisor, and zero
as the divisor. It seems that the only reasonable
way to explain division involving zero is in terms
of the basic definition of division, since division is
the inverse of mulfiplication. To divide a number
A by a number B means to find a number C such
that C x B = A. It is understood that, if the
division is to be well-defined, two things are nec-
essary: (1) that a number C exists — that is, one
must be able to find such a number, and (2) that
the number C is unique — that 1is, it must be the
one and only number that fits the situation.

First, suppose the dividend is zero and the
divisor is not zero. Take the particular example 0
divided by 5. What does that mean? It means we
must find a number C such that Cx 5 = 0. It is
evident that such a number C, zero in this case,
exists and is unique. It is the only number which
will make the above open sentence true. Hence in
this case division iz well defined. Zero divided by
any number which is not zero is zero.

Second, suppose the dividend and the divisor
are both zero, then what? Zero divided by zero
equals what? We must find a number C such that
C x 0 = 0. That seems simple enough, as it is
easy to find such a number C. In fact we could
replace C by 2 or 3 or 5, and the open sentence
would be a true statement. Pursuing this further,
one can readily see that C could be replaced by
any number. So in this case a number C does
exist but it is not unique. Any number would do.
For this reason, this is not really considered a good
division, and in mathematics it is often referred to
as the indeterminate case.

Thirdly, suppose the dividend is not zero and
the divisor is zero. Take the particular example, 7
divided by O = ? That means we must find a
number C such that C x 0 = 7. In this case, no
such number C exists, as we learned before that
any number times zero is always zero and never
7 nor any other number which is not zero. Con-
sequently it is impossible to divide by zero. If this
is not a convincing argument, you might try re-
peated subtraction. Start with 7 and keep sub-
tracting 0 until you obtain 0.

Much of mathematics is simply renaming num-
bers and being smart enough to find that particu-
lar name for a number that best fits the situation
or simplifies it. Let us cite a few examples in which
zero is renamed or is used as the additive identity.

One case of renaming zero is in one of the ways
of showing that a negative integer times a negative
integer is a positive integer. This procedure as-
sumes that students have already learned that a
positive integer times a negative integer or a nega-
tive integer times a positive integer produces a
negative product. For example, (—3) (+5) = —15.

Then one proceeds as follows:
(1) (=3) (-5)=?
(2) (=3) (0)= 0

(3) Rename zero as (—58)Y+ ( + 5).
(4) Then (-3) x [{-5) + (45] = 0
(5) Using the distributive principle:
(- x [(-5)+ (+5)] =
(—3) (=5)+ (~3) (+5)= 0.
(6) Therefore (some number) 4 {(—15) = 0.
(7) The only number that will make that
statement true is (+ 15). -
(8) Consequently (—3) (—5) must equal
+15.

This example shows the renaming of 2 number
by the use of zero as the additive identity element
in the proof of the theorem stated previously:
Given a ring with the operations of addition and
multiplication and whose additive identity is zero,
then for every element r belonging to the ring,
rx0= 0xr= 0.

The proof is as follows:

(I)rxr = rx (r + 0)—Renaming r using
the identity element

r x t 4 r x 0—Distributive prin-
ciple

(3) Since (r x 0), when added to (r x r), does
not make (r x r} lose its identity, and the
additive identity is unique, (0 x r) must
be another name for the identity element.

(4) Thereforerx 0 = 0.

(5) rxr = (r + 0) x r—Renaming r, using
the additive identity

(6) rxr= rxr + 0x r—Distributive prin-
ciple

(2) =

(7) Again, as in step (3), 0 x r is acting as the
identity element and must be equal to
Zero.

(8) Thereforerx0 = Oxr = Q.

In deriving some of the formulas for finding
derivatives in the calculus, one makes use of other
names for zero, names like f(x)g(a) — f(x)g(a)
or f(a)g(a) — f(a)g(a). So one can readily see
that even in higher mathematics zero plays a promi-
nent role.

Let us now turn our attention to the number
one, which like zero, is a perfectly good number
and special! The number one is a counting num-
ber because it is the first number we use when we
count the elements in a set. It is a whole number
because it is the cardinal number of any set which
contains one and only one member. It is an integer
and an odd integer as it leaves a remainder of one
on division by two. The number one is a rational
number, because it can be named as one 2/2 or 5/5



or in an infinite number of other ways. The num-
ber one iz a real number, since it belongs to the
set of decimals. The number one is a complex num-
ber because it can be written in the form 1 + 0L

How does the number one behave in the op-
erations of addition and subtraction? In addition,
adding one to a whole number gives the next whole
number. Subtracting one from a whole number give
the preceding whole number, except in the case
of zero. If one is subtracted from zero, a negative
one is obtained.

In multiplication one plays a very unique and
important role. When any given number is mul-
tiplied by one or one is multiplied by any given
number, the given number does not lose its iden-
tity. Symbolically, n x 1 = 1 x n for every real
number n. No other number behaves that way. For
this reason we give the number one a very special
title: the multipliceiive identity element.

Does the number e play the same role in di-
vision? The number one plays a role in division
analagous to the role zero plays in subtraction.
This is true beciuse division is the inverse of mul-
tiplication and subtraction is the inverse of addi-
tion. When any given number is used as the divi-
dend and one as the divisor, as in n divided by 1,
then the given number does not lose its identity.
However, if the dividend is one and the divisor
any given non-zero number, the quotient is not
the given non-zero number. So, mathematically
speaking, we would say that the number one is
a right ident.ty element for division but not a left
identity. Therefore, it cannot be called an identity
element. Whenever the dividend and divisor name
the same, non-zero number, the quotient is the
number one. In symbols, n/n = 1 for every number
n which is not zero.

One, under various names, is frequently used
to simplify expressions or processes. One example
of this is in the addition and subtraction of frac-
tions. For example, in adding 2/3 and 1/4, we
would rename 2/3 ag 8/12 and 1/4 as 3/12, Actu-
ally, in this renaming, we are multiplying both
2/3 and 1/4 by the number one, using the name
4/4 for the number one.

In division of fractions, the principle that the
dividend and the divisor may be multiplied by the
same non-zero number without changing the quo-
tient and the special role of the number one can
be used to explain the inversion method, “invert
the divisor and multiply”. Take 3/4 < 2/3 as an
example. If we could in some honorable and honest
way find a way to make the divisor one (and we
can!), we know that the quotient would be the
same as the dividend. If we multiply 2/3 by its
reciprocal 3/2, then we obtain the number one.
But if we multiply the divisor by 3/2, then we
must also multiply the dividend by 3/2. So we
have: 3/4+ 2/3 = (3/4 x 3/2) +~ (2/3 x 3/2)
= (3/4x3/2) + 1 which equals 3/4 x 3/2 — 9/8
or11/8. : o

Another use of the number one in the area of
division of fractions might be illustrated. To di-
vide one fraction by another, say 8/9 < 2/3, one
could simply say, 8 ~ 2 = 4and 9+ 3 = 3.
Therefore 8/9 — 2/3 = 4/3 — 1 1/3. Is this a
correct procedure? Yes, it is, as it checks if one
uses the basic definition of division. Does it work
every time? It does! But the truth is there are
times when it does not prove as simple as in the
case above. In fact, in the majority of cases it
does not prove to be that simple. Yet it can be
done. For example, take 5/8 + 3/4, At a glance
one can see that one would like to have the factor
3 as part of the number named in the numerator
of the fraction which is the dividend. By using
3/3 as a name for the number one, one can supply

. EX3 -
3 as a factor: (5/8 x 3/3) = 3/4="34= T“‘z%—"—?
(5x3)<> 3=5and (8x3)+ 4= 6. Therefore
5/8 — 3/4 = 5/6. One can use this method of

“doctoring the expression” in more complicated
instances as in this example:

5/8<—2/3 =5/8x(2x38)/(2x3)+ 2/8
EXZX3 . oz __ /5

— . T ———

gxzXZE = 2 /e

There are many other examples in elementary
and advanced mathematics where complex expres-
sions can be reduced to simple ones by multiply-
ing by the number one, using that special name
for one that best fits the situation. To cite just
one example and to provide another and perhaps
the simplest method of dividing one fraction by
another (it might be called the complex fraction

method), consider 5/8 — 2/3. This gf.i;;l be written

in the form we often use for division EA Then both

the dividend and the divisor may b% multiplied by
)

24
the number one, named as 24/24.-1—/’; X757 —j—g .

Surely junior high school students of mathematics
and those beyvond that level could divide one frac-
tion by another mentally, if they became apt at
this method.

There are instances in mathematics where the
number one, though not explicitly written, is un-
derstood to be. For example, in writing x, the co-
efficient of x is understood to be one, and could
be written as 1 - x. When the number one is used
as an exponent, it is generally not written but
understood, which means that x could also be
written as x/.

Zero and one play an interesting role together.
Any number, except zero, raised to the zero power
is equal to one. It seems very logical that this be
the case as can be seen in our base-ten numera-
tion system where we can represent any number
as a sum of terms, each of which is some basic



symbol times a power of the base. For example,

2537 = 2 thousands + 5 hundreds + 3 tens
-+ 7 ones

= 2(1009) + 5(100) + 3(10) + 7(1) _

= 20100° + 5(10Y*+ 3(10)" + 7(10)
Since the powers of ten are decreasing as one
proceeds from left to right, it would seem reason-
able that 10° should be another name for the
number one. Applying the laws for exponents, one
can justify that this is the case. bN, which is read
“b to the nﬂ"’power”, means b taken as a factor
n times. Then b » b = b‘r, because b3 means
b taken as a factor 3 times and b~ means b taken
as a factor 2 times, so all together b is taken as
a factor 5 times, which is written b‘s.- In general,

Mo N A .-

beb= , where m and n are posifive
integers. What does b? mean? To say that b°
means b taken as a factor zero times has no mean-
ing. So we must find another way to define it, 2
way that will be consistent with the properties for
positive integral exponents. Let us examine a few
situations in which the zero exponent might oc-
cur. Suppose we asked the questiog: b> times
(b rai%ed tg whatapowel) is equal to b, or in sym-
bolsb ¢« b* = b .If we wanted the same property
of expox;ents to hold as above, b® would have to
equal b, since 3 + 0 3. But here b’ is also
behaving like the multiplicative identity element
and since that element is unique, b~ must be equal
to the number one. This definition of b’ would
also fit the other property for exponents, which

says that b /b = bM'A: where m > and b is not
zero and can be verified by use of the basic defini-
tion of a positive integral exponent. A logical ques-
tion to ask would be: what if m is equal to n?

Then /6" = b~ = b°. By the basic defini-
tion of an exponent, b”/b/y 1. Then by the
transitive property: 1 = b”/b”z;nd b”/b”: b°
imply that 1 = b°.

Sister Mary Petronia Van Straten, SSND
Mount Mary College
Milwaukee, WI 53222

FRACTIONS

This is a teaching sequence for a class of ten
and eleven years old boys from a variety of back-
grounds in an English Private School. All have
some acquaintance with the subject from primary
school. Some can parrot the rules. Others have
little idea. I decide to take the subject as a dia-
logue, picking out the ideas that I need, politely
ignoring the others. The method is a familiar one
in British schools. There is no rigour—we save
that for later, much later. We are trying to secure

——
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the understanding appropriate at this age, based
on experience and developed by reason. I have kept
the form of the dialogue, as accurately reported as
I can. I speak first.

Well, O.K., what is a fraction?

Part of something.

One over something.

Can anyone show me a fraction in this rooms?
(Consternation, then someone tears a sheet of
paper into two bits and waves them at me)

What fraction is that?

A half!

How do you know?

Because he folded it onto itself.

No, I didn’t!

Well, you should of.

Why?

Because it makes two equal bits. Then they're
halves.

Right, ‘well done! But a half is a very simple
fraction, can anyone show me another one—and
without tearing up paper?

That window pane, its a quarter of the window.

Are there any other fractions there?

Those three panes, they are three quariers.

Two quarters. (Pause) But that’s e half win-
dow (Long pause)

This is the moment that I am waiting for. I
believe that the whole of the subject can be made
to rest on two ideas, and both have now been
mentioned. The first, primitive one is derived from
experience. Sheets of paper can be folded or cut
into halves, quarters, thirds, and so on. Two halves,
four quarters, three thirds, etc., recombine to make
the whole. Experiments with weights and measures

- reinforce this. Then on to abstract ideas, seven

days in a week, so sevenths or four fives in twenty,
so quarters. The second basic idea is that of equiv-
alence. This takes longer.

A simple diagram make it clear why it is true

that &= %\ =
oW

Hé‘

Z Y é

Fie l Z

in a special sort of a way. T'wo quarters of a cake
are not the same as one half. The cake has been
divided in a different way, more cuts with a knife
are required. Some crumbs have been lost. In an
idealized sort of way they are equivalent, it is

|-~

\-..

— e b

* Fic.2
easier to see it with toy soldiers (Figure 2). But
it remains a deep idea; and it is not obvious to a




child that a fraction of a cake and a fraction of
four soldiers can be represented by the same
mathematical symbol.

Then it is necessary to make things more com-
plicated

and seven soldiers will not do—try asking why?

I find it necessary to set the boys to work
drawing, cutting and writing to make certain that
this stage was not omitted by primary teachers
eager for results. There are some muttered com-
ments that this is haby-ish. But there is more to
come.

Fractions can be complicated, as well as sim-
plified. Some boys have a superstitious dread of
two-quarters (two-fourths) or five-tenths and
think them illegal. But I need them to be as happy
saying one-half is eqaivalent to five-tenths as
when saying that five-tenths is equivalent to one-
half. So 1 define the meaning of the expression
‘complicating a fraction’ and we go on talking.

How many different complications of —32-" are

there?
4 .

Lots, let’s ee Z‘,;ﬁ,&é/,é, ... thirty-two over. ..

You have missed out ;i-é—

Thirty-two over forty-eight and . .. I can’t do
any more but I could go on and on, there’s lots
and lots, . . . any number.

What is the rule for complicating them?

You just take twice times the top (numerator)
and bottom (denominator).

How do you get g’, then?
Well, vou can take three times two.
And five times, like EI: = -‘/2;-'

So the rule is, “You can multiply the top and
bottom by two or three’?

Yes.

No, and five.

So, take 'f:l , you say twice the top, 6, and
three times the bottom, 12 and then-ff = 7"3 ?

(Howls) No! That’s stupid!
Well, what’s the matter with it?

[elels) [e]ele]
co0 000

While 0o000000
i 00000000

370 388

e]e]e] 000
000 000  _s of -> L4 x 6 = 24,

Top and bottom by the SAME thing.

Good, what’s the rule then?

‘You can multiply top and bottom by the same
number, two or three’

Or five.

Does that make sense?

Not really; vou had better say it . . .

How about, ‘You can multiply top and hottom
by the same number, providing it is 2, 3 or 57

Or 6.

Or 7 or 8,

So some one writes on the blackboard, ‘A frac-
tion is equivalent to the fraction obtained by mul-
tiplying top and bottom by the same number.
(No one thought of 0) General agreement, mutual
congratulations and the class settle down happily
to finding out who can produce the most horrible
complications of a simple fraction. One boy pro-

d__ L 377 s8f =2l
duces 2 T3P 29 gl

Some arrive for checking without the original
fractions; how would you like to be asked to check

7 Ty ? I then asked for both the two fractions

and the top and bottom multiplier to be given
and we produced the format used in the texts of
the School Mathematics Project, which we are

using. This looks like this: L —x*"lf-> _ e
J x4 5 = 2
We also complicated 2 into £ , ‘_/gf, etc. but no

one ventures into a fractional multi%ﬁ(er, even after
the example pictured in Figure 3 above.

Let’s come back to some easy ones and think
of doing something shghtly different with them.
Do you agree thatﬂ: 3£ ?

Yes.

What have I done this time to top and bot-
tom?

Divided by four.

Right. Could I have obtained the same an-
swer by multiplying by something?

Huh?
What must you multiply 8 by to get 27
A quarter? ,
£ X
& Ty 2
L E oo ® ¢ L - ="
xcellent n X ;_} =3

A quarter of 8 means a quarter times 8, doesn’t
it?

I dorn’t quite see that, Sir!

The translation of ‘of’ into ‘multiplied by’ is not
easy. The cure is probably to go back to structured
materials, or pebbles.

{4 groups

six

a half 1 -
- -y = = &,
> of > 5 X 10

sixteen



But for the moment we press on with a whole
new range of nasty complications of harmlelss frac-
tions, top and bottom being multiplied by 7 , then
Z | then lﬁf, etc. Some of the class are not very
good at these, the error level rises, but we hope
that this will clear up later.

Some of the complications produced are ‘four-
deckers’, like this:

2 _xlz_ 2%
3 Xz, 37

There were no complaints, but, accepting that
the boys know what fifths and sevenths are, what
are they to mean by ‘three-and-three quartersths’?
Is it time to interpret fractions as division sums.

Is one third a number?

No, not really.

It’s part of a number.

It's not like 1, 2, 3, but it must be a number.

Usually I give you a problem and you tell me
the answer. Let’s do it the other way round! The
answer is 6. What was the problem?

2 X 3

3+ 3.

And 2 + 4 and 1 + 5 and ... (They soon get
the ideal!)

Lots of problems have 6 for an answer. Now
the answer is one-third. What was the problem?

1+ 3.1 .

This is more sudden than I had expected and
gounds like a parrot response. Does the class know,
or does the boy know what he is talking about?

‘When I give you the problem 12 < 3, you have
to work something out in your head to get the
answer, 4. If I give you the problem 1 = 3, and
you give me the answer, -é.- ., you have not had to
work anything out, have you? How is that?

Huh?

Well, your have just written down the question
in another form, haven’t you? (On the blackboard)
1 3 3 =& . What is the answer to the problem
123 + 345?

It’s% ves, I see. ..

But they could be worked out—by decimals.

Indeed they could, that's another story though.

A fraction, then, is both a problem and its
answer. It can be the end of the problem, or the
start. There is no way of avoiding this difficulty
of the notation of fractions that I know, apart from
familiarity and frequent use.

Can you mark out a length of 3 metres?

Yes, easy!

Weigh up 3 kilograms of potatoes?

Yes!

Measure out a length of ;_i,-"

kilogram?

Yes, of course.

metre? Weigh up

Do you think that % is as much a number

as 37

i2

Yes.

I¥'s much smaller, though.

It’s point three three three three, . . .

Now the ideas and the experience required to
master them are available. We have talked about
the nature of fractions, seen how they arise, drawn
pictures of them and have studied equivalence. The
time has come to start working with them-—and
this will strengthen the conviction that fractions
are numbers in their own right, that they do not
have to be ‘worked out’ as decimals.

Can you add '72" to —?'?
Easy!
‘What about adding ;;' to“';:?
That’s ‘71
Can you have more than seven-sevenths then? .
Of course, seven-sevenths is one, this is two
=4
more, / =,
2 . 3
Can you add 7 to % ?

(After a pause) You want a common denomi-
nator. -

What’s that and what for?

It's 2 X 3, no I mean 7 X 8. I don'’t know
what for.

Yousay2 X 8and 3 X 7.

“Why?

Well, don’t let’s guess, let us have a look at
some diagrams. What fraction does this represent?

That’s “'{»'7'2'

And what is this?

e 3
That’s 7

Well, let’s put them together and see what we
have got.

What have we got here?
(Doubtful noises) We car’t tell.



2 Z

If you can use this for 7 ¥ = , why not for

2, 3,

7 137

They're different.

Excellent! So they are. Could we not make
them the same?

Yes, yes, complicate them!

Into what?

56’s. I told vou, the common denominator!

I know you did, and I didn’t say you were
wrong, but you couldn’t tell me what you wanted

it for. Now make them both 56ths.
So we go to the blackboard and one boy writes
NI X S /L
and another
3 <7
— T = a2/
i __,,x__7_> ;‘5‘{
e 2 3 _ S 2 37
And then we write 7-{-3, =Et&Z =5

It is a small step to see that the same thing en-
ables you to subtract fractions with different de-
nominators. I do not suggest the notation

2, 3 _ /it 2

7 F 5¢

One boy is working his examples for prae-

tice like this (The class is now setting itself addi-
tions and subtractions and solving them). I ask
him what he thinks he is doing, and he replies
‘saving ink’. A convincing answer and I do not

P
interfere. After a bit we move on to<d 7-#45 7.
We treat this as J—f'//'/"%z" % . I do not

mention associative or commutative laws. Save
these until counter examples make it important to

see whether or not they are true. For& g’ —-4[7?‘ s
. - 7. 4
we convert first to 447 —-64 j;g' , and then go

ahead. There is little difficulty.

Today we shall investigate the multiplication

of fractions. Starting with something simple, what
2
is &, )(77' ? 7

How did you get that?

I said five times two is ten

Five time two whats is ten whats?

Sevenths.

Right. Sevenths as numbers, or seventh parts
of things, or indeed anythings combine in this
same way, don’t they? So what is the rule for mul-
tiplying a fraction by 5?

Multiply its top by 5.

Why not its bottom as well?

That would leave it the same, complicated.

——r
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Yes, of course, that is the rule for finding an
equivalent, complicated, fraction. Why not just
multiply the bottom by 5 then?

Because it’s not the right way to do it.

It would make it into thirty-fifths, that’'s no
good,

No good for multiplication, certainly, but ne
good for anything? Let’s have a look. (On the
blackboard)

2
——— — _7 I
7 =% s57

What has happened to '7'% ?

I¥’s divided by 5!

Taken a fifth of it :

Yes, I like the second way of thinking about it,
let’s write it out again in proper notation. How
did you know that my previous iry was not good
mathematics?

Because you put an arrow, not an equals. (This
referred to some previous work, when I had de-
scribed ¢’ as a ‘sacred’ sign, never to be used
unless it is absolutely true and unless the mathe-
matics is absolutely right. When I just mean that
something seems to follow I use the ‘careless’

sign —>)
Well, here it is. {On the blackboard)
2 4 _ =2
X S T 5T

7

Now we’ll try another one from a different

L&
angle. Work out 3 X "7_' . How will you do that?

Will you turn it upside down?

What on earth for? What did we say that mul-
tiplying by % was the same as?

Dividing by 3.
5
Can you divide - by 3?
Not very well.
Can you complicate it into something that will

divide by 3?
Yes, times it by 3 (Horrible expression!)
. X3
G4 - > e
7 7 LSV N 2/
) PGP S B
4’ 72 F=z7= 2/

Very good, but I want it in the multiplication
form with which we started; and you seem to have

i
got things back to front. Are you sure that 3 X %
ig the same as :5‘7__)( 3{' ?

They were sure, but not cleér why they were
sure. I left this to be cleared up later and handed




one of the boys the chalk to rewrite the previous So, on the blackboard we write

bo d1 on sum He wrote . .
v’s divisi Vs & ..:_72:: _)‘_"5:Q__> 172 '
X7'*J>‘~.;?,/“;z,/ _ - 7 /e
Now calculate%x a" . Treat this asﬁ)(?x; _%-— _}{é__} Z.%f. 7y

Argue it out for us to hear.

Well, ¢ quarter of five eighths you can’t. So
complicate it by four. Five-eighths is twenty thirty-
twoths (thirty-seconds), and a quarter of this is

And then, before an unnecessary method sinks
in too deep, I show them another way:

five thirty-twoths. 2 X £
Let me write this up, with the other bit: 7 ==, v A J
& . 15 - XT3 - Ly
44)(! 3XEXF ij%XJZ‘jXJ.& 3z P . 723 = 2/ :é—-
— - 3 ___£
Now look at all these results and find me the 7 -3y FKrZE / /

qu.lck Way of domg 11: 5 5, s
3w L .

I also point out that, when they get good at it,
they can leave the bottom line out altogether—to
the great relief of the boy who had earlier exhorted
Ime to turn something upside down’.

Yes; multiply the tops and multiply the bot-
toms; I remember now!

Right. That’s the rule, but don’t forget that we
know how to do it from first principles. Now set Needless to say this approach can be made more
yourselves some muitiplications, include mixed rigorous. As detailed it depends on the group hav-
ing previous knowledge, of some sort. Many ques-

. 32 . .
numbers hke”’a?" , and try particularly some like tions are begged—but at junior secondary stage

%K /é and some like == ?,. x 6. this is hardly surprising! 1T hope that these candid
camera shots of lessons will be of interest to Texas

. It amuses me to see the cla.ss enthr.alled by teachers. Even if the subject matter is neither
simple repetitive work and determined to find some new nor particularly exciting, the method and the
fraction problem that will beat their neighbours. I (mostly) genuine dialogue may amuse.
am saving fractions with zeros in them until later.
But it is time to tackle division. Alan Tammadge

Remind us of the answer to 4 -+ 6. Sevenoaks School

-g— J mean % Sevenoaks, Kent, England
Good. Now tell me another way of writing
3

Z %
7 < F
2
Well, I suppose you could put ~ =7’
3

£
A short digression is needed here on the need
for a long line for the middle fraction bar, Later

2,
we found three values for ;
=2
according to which bar was taken ‘to be the long

one’.

Now that’s a pretty uncomfortable four-decker
fraction. Could we complicate it to simplify it?

Multiply it by something?

Common denominator.

Multiply top by 7 and bottom by 8.

(Chorus) No yvou can’t! .

If we are going to multiply top and bottom by
something it had better be the same something,
hadn’t it?

What about 567

What about it indeed. Shall we try it?

14



g@‘-*’ a&- )

¢’
N1 s
ET
3238 Ty X, 2 /
@1 sinfdecling « Caste ({

o |

I
i

<[
ek

g DhoT (5

3 OUQ a7

? 5 N ¥ w

A .25 g 2

TR\ Taen gl N
oo W

) <& n.ai\,:‘n

<

LT

~

“Now that we've worked the first problem in class—itake the next
nineteen for tomorrow’s assignment.”

Executive Appointments TCTM Board of Managers

Dr. Harry Bohan, Sam Houston State Univer- J. William Brown, Editor, Texas Mathemaiics
sity, Huntsville, has been appointed to serve as Teacher; Shirley D. Ray President, TCTM; Dr.
vice-president of TCTM, representing elementary Floyd Vest, Treasurer, TCTM; William (Bill) Ash-
education. He replaces Dr. Ida Mae Heard, re- worth, Business Manager, Texas Mathematics
tired. Teacher.
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PROFESSIONAL MEMBERSHIP APPLICATION
L O O e L L R A R R A e

Date:, School: Schoo! Address:

" Position: {7 teacher, {J department head, [ supervisor, [J student,* [] other (specify)

level: [J elementary. [J junior high schoei, [] high school, [ junior college, [ college, [ other (specify)

Other Information: Amount Paid
. {7 MNew membership
Texas Council of Teachers of Mathematics D Renewal memberstip | g g
Locat [0 MNew membership
ORGANIZATION: O Renewal membership
{1 New membership
OTHER: [ Renewal membership
Name (Please print) Telephone.
Street Addre:
City Stale, ZIP Code
Check one: ) Wew membership [ Renewal membership
$ 9.00, dues and cne journal Q' Arithmeric Teacher or [T Mathemeatics Teacher
National 13.00, dues and both journals
Council 4.50, student ducs and one journal* [0 Arithmeric Teacher or [ Matfiemarics Teacker
of
4.50, student dues and balh journals®
Teachers
of 5.00 additzonal fer subscription 1o Jowrnal for Rescarch in Markemurivs Education (NCTM members only)
Marthematics _50 addittonal for individuzl subscription to Afathemarics Student Jourral {INCTM members only)
The membership dues payment includes 34.00 for a subscription to either the Marthemarics Teacker or the
Arithmetic Teacher and 25¢ for a subscription 1o the Newsfeirer. Life membership and institutional subscrip-
tion information available on request from the Washington office,
* 1 certify that | have never laught professionally Enclose One Check
(Student signature) for Tatal Amount Due e

Fill out, and maii to Dr. Floyd Vest, Mathematics Departrment, North
Texas State University, Denton, Texas 76203.
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